
‭Improving the logical reasoning‬
‭capabilities of transformer models‬
‭Ishaan Domkundwar‬

‭Abstract‬
‭This paper provides a comprehensive evaluation of advanced prompting techniques and the‬
‭improvements they result in for logical reasoning for large language models (LLMs), with a‬
‭particular focus on transformer architectures. Reasoning is imperative for LLMs to be able to‬
‭propose solutions, especially in a more technical scenario, effectively. The study aims to‬
‭address the limitations of current LLMs in handling complex pattern recognition and sequence‬
‭prediction tasks by working with these prompting techniques and models. We assess the‬
‭effectiveness of methods such as Chain-of-Thought (CoT) prompting across LLMs that include‬
‭GPT-4o, Meta Llama 3.1-70B, Mixtral 8x7B v0.1, and Google Gemma 2. We find that multiple‬
‭prompting techniques consistently enhance the reasoning capabilities of LLMs, leading to‬
‭notable improvements in complex task performance, especially for GPT-4o and Meta Llama‬
‭3.1-70B. Techniques such as zero-shot CoT and retrieval-based prompting show promise, CoT‬
‭stands out as the most effective with an enhanced score of 90% up from 47%  for the hard‬
‭testing set with GPT-4o. Some models go wrong through arithmetic problems as a result of‬
‭following prompting techniques. This paper's findings offer insights into the strengths and‬
‭limitations of current LLM prompting strategies, with implications for improving future model‬
‭development through prompt-aware fine-tuning and architectural adaptations.‬

‭Introduction‬
‭Pattern recognition has been a pillar in machine learning for a long time and has had extensive‬
‭advancements to the point where machine learning models are deployed in various applications‬
‭where pattern recognition plays a key part in their function. Pattern recognition uses machine‬
‭learning models to recognize patterns or consistencies in data (1), which can be text and also‬
‭other quantities such as image and sound. The advancement of machine learning algorithms‬
‭and their efficacy at performing these tasks have led to them being applied to many situations‬
‭including fraud detection (2) to detect anomalies in transactions or behavior, and also for‬
‭cybersecurity and possible intrusions; computer vision (3,4) to effectively recognize and classify‬
‭images and objects, extensively used in autonomous vehicles, robotics, and healthcare; and‬
‭financial forecasting (5) for market insights and predictions and for user credit scoring. These‬
‭algorithms perform reliable pattern recognition based on a vast collection of data and past‬
‭results. With sequence prediction, a smaller set of data, usually a set of integers, is available for‬
‭the model to use for its prediction based on the pattern it finds.‬

‭Similar to how pattern recognition is essential in its many applications, it is also crucial to‬
‭figuring out a solution to a problem and learning how to solve certain types of problems (6). In‬



‭an educational scenario, pattern recognition has also been shown to improve the‬
‭problem-solving capabilities and mathematics skills of students (7,8). Today, with the‬
‭mainstream use of popular LLM-based chatbots like ChatGPT (33), Claude 3.5 Sonnet (34),‬
‭and Google Gemini (35), LLMs are being used increasingly to assist students and teachers with‬
‭education and streamlining tasks. LLMs can especially be applied for personalized education‬
‭and explanations (9), with mathematics being a large possible subject for application for tasks‬
‭such as explaining solutions and patterns and guiding learning.‬

‭Although logical reasoning and pattern recognition are essential in these ways, it has been‬
‭recognized that LLMs perform poorly in many mathematics applications and problem-solving.‬
‭Natural Language Processing (NLP) is a big part of how LLMs function, but for these more‬
‭logic-based tasks, there is usually only a single correct solution, which may differ from other‬
‭LLM tasks such as outlining or planning, posing a challenge for LLMs to reach accurate‬
‭answers (10). Hallucination is also a major problem with LLMs solving mathematics problems,‬
‭and they can often guess or make assumptions while solving (11). Hallucination is when the‬
‭model generates incorrect or misleading data, such as wrongly performing an arithmetic‬
‭calculation. Math is a subject that requires a lot of reasoning and logic capabilities, and‬
‭advancements in machine learning and AI in mathematics will likely lead to improved reasoning‬
‭and logic skills, approaching human-level (12). Recently in January 2024, Google DeepMind‬
‭released a paper presenting AlphaGeometry, an AI system that is capable of complex‬
‭Olympiad-level geometry problems, combining a language model and a symbolic engine (12).‬
‭Although this is not solely an advancement in LLMs and transformer models, it is a big step in‬
‭that direction. AlphaGeometry vastly outperformed the previous state of the art, being able to‬
‭solve 25 problems in the time limit, which is approaching the average human gold medalist with‬
‭25.9 problems (13). Others have already been able to enhance the performance of‬
‭AlphaGeometry to an extent where it even surpassed the Olympiad gold-medal mark (14).‬

‭A major way that LLMs’ performance and efficiency for a certain set of tasks can be improved‬
‭without completely fine-tuning the model or training a separate model is through prompt‬
‭engineering and crafting the input to elicit a certain response or behavior from the model.‬
‭MathPrompter (15) also looks at mathematical reasoning with LLMs and combines relevant‬
‭prompting methods along with a framework and drastically improves LLM performance in these‬
‭tasks. Some popular prompting methods explored in this paper include Chain-of-Thought‬
‭prompting, which guides the model to use a logical chain-of-thought, and Zero-Shot‬
‭Chain-of-Thought prompting, which does the same in just one sentence. This paper focuses on‬
‭investigating various prompt engineering mechanisms and their applicability and efficiency in‬
‭increasing the mathematical reasoning capabilities of prevalent transformer models. We will test‬
‭and evaluate the prompting methods presented and discuss a suggested application of these‬
‭techniques that results in the highest performance.‬

‭Related Works‬
‭Prompting:‬‭The paper "A Systematic Survey of Prompt‬‭Engineering in Large Language‬
‭Models" (17) provides a comprehensive review of techniques like zero-shot, few-shot, and‬
‭Chain-of-Thought (CoT) prompting, which have shown significant promise in improving LLM‬



‭reasoning capabilities. These approaches, particularly CoT, closely align with the focus of this‬
‭paper on enhancing logical reasoning through advanced prompting techniques. This paper is‬
‭also useful to consider the various prompting methods, given its recency and presentation of‬
‭capable prompting techniques for various tasks.‬

‭Prompting with LLMs:‬‭The paper "Leveraging Large Language‬‭Models with Chain-of-Thought‬
‭and Prompt Engineering for Traffic Crash Severity Analysis and Inference" (27) explores the‬
‭application of advanced prompting techniques, specifically Chain-of-Thought (CoT), where‬
‭LLMs break down a problem into logical steps, to analyze and predict traffic crash severity. The‬
‭authors focus on how CoT can break down complex reasoning tasks in real-world scenarios,‬
‭showing how LLMs can be leveraged and improved with structured prompting to improve‬
‭decision-making and reasoning. "Language Models Can Improve Event Prediction by Few-Shot‬
‭Abductive Reasoning," (28) examines how LLMs perform event prediction by applying few-shot‬
‭learning combined with abductive reasoning. This approach allows models to infer the most‬
‭plausible explanation for an incomplete event sequence, showcasing the potential of LLMs with‬
‭prompting to improve logical reasoning when dealing with uncertain or incomplete information.‬

‭The paper "A Systematic Study and Comprehensive Evaluation of ChatGPT on Benchmark‬
‭Datasets" (29) evaluates ChatGPT's performance across 140 tasks, revealing its strengths in‬
‭open-domain knowledge, coding, and other areas but highlighting weaknesses in‬
‭commonsense reasoning and text summarization. Despite strong zero-shot performance, where‬
‭no samples are provided in the prompt, with the prompt containing only the question and the‬
‭prompt itself, the study identifies variability in results based on model versions. Similarly,‬
‭"Evaluating the Logical Reasoning Ability of ChatGPT and GPT-4" (30) compares both models‬
‭in reasoning tasks, finding GPT-4 superior but still limited, especially in out-of-distribution‬
‭scenarios and complex logic-based tasks. Both papers underline the need for improvements in‬
‭reasoning.‬

‭LLM Learning:‬‭The paper "The Counterfeit Conundrum:‬‭Can Code Language Models Grasp‬
‭the Nuances of Their Incorrect Generations?" (31) explores the challenges code models face in‬
‭identifying and correcting subtle, incorrect programs that pass basic correctness checks. It finds‬
‭that models, including GPT-4, struggle to distinguish these counterfeit outputs from correct ones‬
‭and are often less effective at repairing these mistakes than simply generating new code.‬
‭Similarly, "Large Language Models Cannot Self-Correct Reasoning Yet" (32) reveals that‬
‭models like GPT-4 fail to consistently self-correct logical reasoning errors, highlighting their‬
‭limitations in autonomously identifying and fixing mistakes without external feedback.‬

‭Baseline: Investigation Methodology‬
‭As previously mentioned, the scope of this paper is to evaluate and propose enhancements to‬
‭transformer models’ logical reasoning capabilities. For the purpose of this evaluation, we use‬
‭mathematical sequence prediction problems to gauge the logical reasoning capabilities of these‬
‭models. Predicting sequences in mathematics requires recognizing patterns and trends in‬
‭numerical data by looking for a logical structure or set of rules that the progression of terms‬
‭follows. This requires the model to deduce the relationship between consecutive terms, and the‬



‭logical reasoning is tested when looking for certain rules or patterns for a sequence. For testing‬
‭and development, we use OpenAI’s GPT-4o, its most capable model, and we also evaluate our‬
‭prompting techniques with other LLMs including Llama 3.1-8B, Google Gemma 2, and‬
‭Mistral-7B. These are some of the latest and most capable transformer-based models available‬
‭and therefore are used for our evaluation and discussion.‬

‭The data‬‭that we used in this paper for testing and‬‭final evaluation is from specifically crafted‬
‭sequences with challenging, unique, patterns, and from a large dataset: the Google DeepMind‬
‭Math Dataset (15). This dataset was initially created for a DeepMind paper analyzing the‬
‭mathematical reasoning capabilities of recurrent neural network models such as the relational‬
‭memory core (RMC) model, Long Short-Term Memory (LSTM) recurrent neural network, and‬
‭the unique Transformer model (16). In this paper, the transformer model has the best‬
‭performance out of the three types of models, outperforming the LSTM and even Simple RMC‬
‭with fewer parameters (30M). Many of the prominent LLMs in use today are also powered by‬
‭transformer architecture, and this along with its superior performance is why we chose to focus‬
‭on transformer models. The dataset itself is massive, consisting of modules including algebra,‬
‭arithmetic, calculus, comparison, measurement, numbers, polynomials, and probability. A total‬
‭of 2,010,000 examples were released per module (15). For this paper, we are focusing on and‬
‭using the data from the “sequence_next_term” submodule from the algebra module. This‬
‭consists of many next-term prediction questions that are in line with the aims of this paper.‬

‭The data that we gathered from the dataset needed to be restructured in order for it to be‬
‭effectively autonomously implemented. The preparation and testing framework that we used in‬
‭this paper is as follows:‬

‭Data Preparation‬
‭1.‬ ‭The relevant data (sequence_next_term submodule) was gathered from the entire‬

‭dataset files. The data classified in terms of difficulty was again labeled and fed into a‬
‭new text file.‬

‭2.‬ ‭This data was reformatted to adhere to the diagram below. Sets of sequences and‬
‭answers were grouped together, each in its own line, with each sequence separated by‬
‭a new blank line. This made it easier for future programs we wrote to parse through the‬
‭data:‬

‭What is next in 85, 84, 83, 82?‬
‭81‬

‭What is next in 15250, 15249, 15248, 15247, 15246?‬
‭15245‬

‭What comes next: 386, 384, 382?‬
‭380‬
‭...‬



‭3.‬ ‭Finally, the data was put through another program meant to restrict the sequences to‬
‭single-digit, double-digit, 3-digit, and 5-digit sequences. We noticed during initial tests‬
‭that many LLMs struggled with large arithmetic calculations. To reduce possible errors in‬
‭sequence prediction due to arithmetic errors as opposed to incorrect logical reasoning,‬
‭we restricted the sequences that we used to up to 5 digits. This limitation prevented the‬
‭LLMs from making consistent calculation errors that were observed with larger numbers.‬
‭Instead, the errors were in the reasoning process, i.e. incorrect steps or logic to solve‬
‭the problem.‬

‭Testing Framework‬
‭We used a randomized testing framework to perform tests throughout the investigation process‬
‭and to generate our final evaluation data. We created a program that randomly selects a specific‬
‭number of sequence-answer pairs from the text files of easy, medium, and hard sequences to‬
‭use for testing. These were then fed into GPT-4o the other models that we used for testing and‬
‭the predicted answers were added to a list. This was finally evaluated against the expected‬
‭answers and automatically scored.‬

‭Baseline Testing - Zero-Shot Predictions‬
‭For our baseline testing, we prompted the model to take the input sequence, process it, and‬
‭output the number that it predicts to come next in the sequence. This is a type of zero-shot‬
‭prompting technique as the model gets an unknown input without any previous examples or‬
‭instructions on how it could be approached and has to simply output its prediction. The baseline‬
‭behavior is outlined in Figure 1 below.‬

‭Figure 1:‬‭Baseline Testing Behavior‬

‭Methodology & Prompting Techniques‬
‭We investigated the efficacy of various prompt engineering techniques and their combinations to‬
‭improve the logical reasoning capabilities of Transformer LLMs with only input modifications. We‬
‭researched and experimented with various prompting techniques for our use case. The‬
‭prompting methods we worked with are the following:‬

‭Chain-of-Thought Prompting‬
‭LLMs sometimes fail to perform complex reasoning tasks effectively, which is where‬
‭chain-of-thought prompting really helps. Chain-of-Thought (CoT) prompting was introduced in a‬
‭paper (18) as a technique that makes LLMs use a step-by-step reasoning process. CoT‬
‭prompting results in LLM outputs that show a much better understanding of the prompt (17).‬



‭This prompting technique resulted in the highest performance in reasoning benchmarks with‬
‭90.2% accuracy using PaLM 540B. Chain-of-Thought prompting is essentially applied as a‬
‭few-shot technique. One or many samples are provided in the prompt along with a step-by-step‬
‭explanation of their solution, with the LLM following this step-by-step reasoning process for the‬
‭answer to the main question. In addition to Chain-of-Thought prompting, Zero-Shot‬
‭Chain-of-Thought prompting exists as a zero-shot way to improve model performance, which is‬
‭another technique we will evaluate.‬

‭Figure 2:‬‭LLM behavior and output using Chain of Thought‬‭prompting‬

‭Figure 2 illustrates the framework used with this type of prompting. The prompt was given to the‬
‭LLM followed by the sequence and the output contained the reasoning of the LLM along with‬
‭the predicted number.‬

‭In-Context Retrieval with Few-Shot Prompting‬
‭Few-shot prompting is a foundational prompting technique that enables LLMs to respond to‬
‭inputs in a certain way without extensive instructions. It involves including several input-output‬
‭pairs, leading to the name “few-shot”, with the expected output for each input in the prompt (20).‬
‭CoT prompting, for example, is a few-shot technique, whereas Zero-Shot-CoT is a zero-shot‬
‭technique. Providing a few examples of tasks improves the capabilities of LLMs to perform‬
‭those tasks; however, this comes with the added token length in the input which may be‬
‭restrictive (17). The exact composition of the examples may also affect few-shot prompting‬
‭results. In-context retrieval relies on the model fetching certain data, like steps for solving the‬
‭problem, from the few-shot samples and effectively applying that information to approach the‬
‭question correctly.‬

‭Figure 3:‬‭LLM behavior and output using Few-Shot prompting‬



‭Figure 3 shows the framework for the few-shot prompting. It is similar to the process with Chain‬
‭of Thought prompting: the instruction is given to the LLM followed by the sequence, and it‬
‭outputs reasoning and the prediction. Since it is few-shot prompting, explanations of the solution‬
‭are not given in the prompt.‬

‭Zero-Shot Chain-of-Thought Prompting‬
‭Zero-Shot Chain-of-Thought prompting aims to bring a very similar performance out of LLMas‬
‭as traditional Chain-of-Thought works. It consists of a simple prompt to emulate the‬
‭performance of few-shot CoT prompting. By simply adding the phrase “Let’s think step-by-step”‬
‭to a prompt, this technique enables models to follow a step-by-step reasoning process (21).‬
‭LLMs are observed to be able to create a chain of thought and execute with that using this‬
‭prompt, allowing them to produce more accurate answers.‬

‭Figure 4:‬‭LLM behavior and output using Zero-Shot‬‭Chain-of-Thought Prompting‬

‭Figure 4 is a representation of the function using zero-shot CoT prompting. Unlike the‬
‭frameworks for CoT and few-shot prompting, this one contains the sequence written before the‬
‭prompt to use the correct language. The phrase “Let’s think step-by-step” logically follows a‬
‭question, in this case, the sequence.‬

‭Contrastive Chain-of-Thought Prompting‬
‭This prompting method is also similar to chain of thought with a different implementation. It‬
‭addresses a key issue that LLMs usually struggle with using CoT prompting, which is identifying‬
‭their own mistakes and learning from them (17). Contrastive CoT involves providing the LLM‬
‭with examples, like CoT, with correct and also invalid reasoning to guide the model toward‬
‭figuring out the correct path of reasoning (22). The prompt contains samples for the correct‬
‭process and samples for the incorrect process for multiple sample problems. This method‬
‭outperforms traditional CoT by marginal percentages. Its applications in NLP beyond reasoning‬
‭are still questioned, but its performance for reasoning tasks similar to our scenario is‬
‭established (17).‬



‭Figure 5:‬‭LLM behavior and output using Contrastive‬‭Chain-of-Thought Prompting‬

‭Figure 5 shows the logical path followed for contrastive CoT prompting. This, again, is similar to‬
‭the CoT and few-shot prompting framework. The instruction is given to the LLM along with the‬
‭sequence, and the LLM outputs its reasoning along with the predicted number.‬

‭Figure 6:‬‭All prompting technique logic paths‬

‭Results‬
‭To evaluate the performance of the models with the baseline prompting as well as the‬
‭implementation of prompting techniques, a simple score was used. A set of samples were‬
‭randomly generated and then fed through each of the models and tested. The score ranges‬
‭from 0% - 100% with each correct answer adding to the score. For example, if the model‬
‭predicted the next term for 60 sequences correctly out of 100 total, the score will be 60%. The‬
‭models were tested autonomously by running the 100 sequences through the models one by‬



‭one. Their results were saved, and the predicted numbers at the end of each output were‬
‭extracted and added to a list. This was cross-referenced with the set of 100 input sequences’‬
‭expected answers and the score was generated. This process was done for all the models,‬
‭once for each difficulty with each prompting technique. For access to models, both the OpenAI‬
‭API (23) and Together.ai (24) were used.‬

‭Table 1:‬‭Transformer model scores on the difficulty-wise‬‭sequence prediction subsets for all prompting‬
‭methods tested‬

‭Model‬ ‭Prompting Technique‬ ‭Easy‬ ‭Medium‬ ‭Hard‬ ‭Average‬

‭GPT-4o‬

‭Baseline‬ ‭77%‬ ‭53%‬ ‭48%‬ ‭59%‬

‭Few-shot‬ ‭98%‬ ‭85%‬ ‭81%‬ ‭88%‬

‭Chain-of-Thought‬ ‭96%‬ ‭90%‬ ‭91%‬ ‭92%‬

‭Zero-Shot‬
‭Chain-of-Thought‬ ‭95%‬ ‭90%‬ ‭84%‬ ‭90%‬

‭Contrastive‬
‭Chain-of-Thought‬ ‭95%‬ ‭88%‬ ‭80%‬ ‭88%‬

‭Meta Llama‬
‭3.1-70B‬

‭Baseline‬ ‭58%‬ ‭46%‬ ‭27%‬ ‭44%‬

‭Few-shot‬ ‭90%‬ ‭88%‬ ‭38%‬ ‭72%‬

‭Chain-of-Thought‬ ‭93%‬ ‭88%‬ ‭73%‬ ‭85%‬

‭Zero-Shot‬
‭Chain-of-Thought‬ ‭86%‬ ‭63%‬ ‭48%‬ ‭66%‬

‭Contrastive‬
‭Chain-of-Thought‬ ‭93%‬ ‭81%‬ ‭63%‬ ‭79%‬

‭Mixtral-8x7B‬
‭Instruct v0.1‬

‭Baseline‬ ‭63%‬ ‭57%‬ ‭47%‬ ‭56%‬

‭Few-shot‬ ‭47%‬ ‭25%‬ ‭13%‬ ‭28%‬

‭Chain-of-Thought‬ ‭35%‬ ‭26%‬ ‭14%‬ ‭25%‬

‭Zero-Shot‬
‭Chain-of-Thought‬ ‭46%‬ ‭21%‬ ‭11%‬ ‭26%‬

‭Contrastive‬
‭Chain-of-Thought‬ ‭41%‬ ‭21%‬ ‭12%‬ ‭25%‬

‭Google Gemma 2‬

‭Baseline‬ ‭68%‬ ‭66%‬ ‭46%‬ ‭60%‬

‭Few-shot‬ ‭71%‬ ‭62%‬ ‭45%‬ ‭59%‬

‭Chain-of-Thought‬ ‭81%‬ ‭62%‬ ‭26%‬ ‭56%‬

‭Zero-Shot‬
‭Chain-of-Thought‬ ‭72%‬ ‭62%‬ ‭43%‬ ‭59%‬

‭Contrastive‬
‭Chain-of-Thought‬ ‭75%‬ ‭49%‬ ‭36%‬ ‭53%‬



‭Analysis/Discussion‬
‭Based on the results seen in Table 1 and the graph above, the various prompting techniques‬
‭elicit different responses in the four models that were tested. Overall, the effectiveness of these‬
‭prompting techniques to improve the performance of LLMs for logical reasoning through‬
‭sequence prediction is apparent. GPT-4o was overall the most consistent and adaptable model,‬
‭and based on benchmarks it is also the most capable model tested in this paper (24). GPT-4o‬
‭achieved scores of 77%, 53%, and 48% on the baseline tests from easy, medium, and hard. It‬
‭responded extremely well to all the prompting methods we tested. In the easy category, its‬
‭highest increase was to 98% with few-shot prompting; for the medium category, both‬
‭Chain-of-Thought and Zero-Shot CoT increased the score to 90%; and for hard, the highest‬
‭score was to 91% with Chain-of-Thought prompting. Interestingly, the highest score achieved for‬
‭the hard testing set was marginally (1 point) higher than the maximum score achieved for the‬
‭medium testing set. This shows that the prompting techniques fundamentally enhance the‬
‭reasoning capabilities of GPT-4o, allowing it to perform equally as well on the hardest testing set‬
‭as the medium one.‬

‭Meta’s Llama 3.1 70B also performed well. It achieved scores of 58%, 46%, and 27% for the‬
‭easy, medium, and hard sets respectively. Although these scores are slightly lower compared to‬
‭the other models, Llama 3.1 also performed very well with the prompting techniques. Using‬
‭few-shot prompting, its score for the easy set increased to 90%, for the medium set increased to‬
‭88%, and for the hard set increased to 38%. The slightly smaller improvement compared to‬
‭GPT-4o could be because of the smaller size of the model at 70 billion parameters. Llama‬
‭3.1-405B may show performance closer to that of GPT-4o. Especially for the easy and medium‬
‭sets, the increase is quite significant, with the hard set score also increasing by a sizable‬
‭amount. Few shot prompting does not contain any explanation, and this high increase in score‬
‭can signify that models use the given examples as practice, and use that knowledge about how‬
‭they solved the example question to solve the actual questions, indicating the rise in score. For‬



‭CoT prompting, it achieved scores of 93%, 88%, and 73% for easy, medium, and hard‬
‭respectively. These scores reflect the promising capabilities that Chain-of-Thought prompting‬
‭displays. Zero-Shot CoT had scores that were also impressive considering the small size of the‬
‭prompt, with almost no additional information or effort required to implement. Contrastive CoT‬
‭also provided a satisfactory increase in performance. The contradictory explanations provided in‬
‭the prompt help the LLM avoid hallucinations and incorrect logic while solving the sequences.‬

‭Mixtral 8x7B, on the other hand, did not work well with the various prompting methods used at‬
‭all. In fact, with all prompting methods, for the easy, medium, and hard sets, Mixtral’s scores‬
‭dropped, with the lowest score being 11% using zero-shot CoT prompting on the hard set, but‬
‭all other hard set scores were also comparable between 12% - 14%. This was quite an‬
‭unexpected observation given the success of GPT-4o and Llama 3.1 using the same prompting‬
‭methods. Mixtral even outperformed Llama in the baseline test without any prompting, but its‬
‭performance was significantly reduced with the prompting methods.‬

‭What is the next term in 36, -236, -1076, -2772, -5612, -9884, -15876,‬
‭-23876?‬
‭The sequence given seems to follow a pattern where the common difference‬
‭between consecutive terms increases by a constant value each time.‬

‭Starting from the first term, the common differences are:‬
‭-200, -836, -1696, -2840, -3942, -4972‬

‭If we look at the differences between these common differences, we can see‬
‭that they increase by 636 each time:‬

‭636, 636, 636, 636, 636‬

‭So, if we continue this pattern, the next common difference should be:‬

‭-4972 + 636 = -4336‬

‭And the next term in the sequence would be:‬

‭-23876 + (-4336) = -28212‬

‭Predicted number: -28212‬

‭Figure 7:‬‭Extract from a Mixtral 8x7B Instruct v0.1‬‭Output‬

‭Figure 6 shows a sample output of the Mixtral model on the hard testing set using‬
‭Chain-of-Thought prompting. As seen in the figure, the logic used by the model is correct. It is‬
‭relevant to the sequences in the dataset and matches the logic from the chain-of-thought‬
‭prompt. It looks for patterns in the common difference and aims to extrapolate the next term‬
‭based on that which is correct logic. The problem arises in the calculations. There are many‬
‭arithmetic hallucinations in this solution, such as the difference between -236 and 36 being‬
‭listed as -200, which should be -272. We observed several other examples where the model‬
‭used the correct logic but got calculations in the middle wrong which led to an incorrect final‬
‭answer. Given the strong baseline performance of the model, the prompting methods could be‬



‭hindering the arithmetic capability of the model. In the prompts, example solutions are written‬
‭out in a sentence-based logical form as opposed to a lengthy explanation of each step (the‬
‭subtractions and each operation needed), which may benefit the logical reasoning but take‬
‭away from the arithmetic calculations of the model in this scenario. Overall, despite the low‬
‭score, We observed that the logic on a majority of the wrong questions was actually correct,‬
‭indicating that the prompting techniques did at least work to increase the reasoning ability of the‬
‭LLM.‬

‭Google’s Gemma 2 also did not respond the best to the prompting methods. Its baseline scores‬
‭were 68%, 66%, and 46% for easy, medium, and hard respectively. Its score in the easy testing‬
‭set increased across the board. The highest increase on the easy set was to 81% using‬
‭Chain-of-Thought prompting. On the medium testing set, the score dropped from 66% to 62%‬
‭for CoT, few-shot, and zero-shot CoT. The score was lowest with contrastive CoT with 49%. Its‬
‭hard set score of 46% stayed at around the same point with few-shot and zero-shot CoT‬
‭prompting, with 45% and 43% respectively, The scores with CoT and contrastive CoT had a‬
‭more significant drop. This trend seems to indicate that, at least for harder functions, the‬
‭reasoning provided in the Chain-of-Thought prompts that proves effective for other models‬
‭hindered Gemma 2’s reasoning process. Figure 7 below depicts how the model can have‬
‭incorrect reasoning: it correctly calculated the differences and identified the constant difference,‬
‭but made a mistake when adding to the previous term to find the next term. Instead of adding‬
‭-148, it adds -156, which is wrong.‬

‭What is next in -22471, -22721, -22969, -23209, -23435, -23641, -23821?‬
‭The common difference between the terms is -250, -248, -240, -226, -206,‬
‭-180. The common difference between these terms is 2, 8, 14, 20, 26. The‬
‭common difference between these terms is 6, 6, 6, 6. Since the common‬
‭difference is constant, the next common difference will be 6. Hence, the‬
‭next term will be -23821 + (-154) = -24075.‬

‭Figure 8:‬‭Extract from a Google Gemma 2 Output‬

‭Overall, the results for the prompting methods were promising. For Google Gemma 2 and‬
‭Mixtral 8x7B, the prompting methods did not turn out very effective, however, Google Gemma 2‬
‭did not suffer a very big performance downgrade across the board as was observed with Mixtral.‬
‭On the other hand with Meta Llama 3.1-70B and OpenAI GPT-4o, the prompting methods were‬
‭extremely effective in increasing the performance of the models. Overall, Chain-of-Thought‬
‭prompting was the most effective for all models. Few-shot prompting did work well to increase‬
‭the performance for both GPT-4o and Llama 3.1-70B, but wasn’t as effective as CoT, and‬
‭provided a bigger increase in the easy testing set over the medium or hard. Contrastive CoT did‬
‭work to remove some hallucinations in the models based on qualitative observations but was‬
‭not as effective as CoT. Zero-shot CoT served as a great way to increase model performance‬
‭without a heavy application. Compared to the other three prompting techniques which are all‬
‭few-shot, zero-shot CoT performed extremely well as a zero-shot alternative with a simple‬
‭implementation. It also outperformed contrastive CoT and few-shot prompting in certain areas.‬



‭Limitations & Discussion‬
‭As discussed in the analysis, some prompts that followed the shorter prompting style framework‬
‭seemed to be affecting the model’s arithmetic capabilities. Some models like Mixtral 8x7B‬
‭struggled with these prompts, as they were trying to emulate the solution given in the prompt,‬
‭which was written in sentences containing overarching steps, not containing every single step‬
‭and operation. This could be limiting the capabilities of those models, but it is generally how‬
‭prompting is carried out. Complete, extremely detailed, operation-by-operation prompting is not‬
‭usually carried out (17) and this would be very tedious for prompt generation. Additionally, we‬
‭were not able to use some of the larger open-source and closed-source models due to‬
‭computing and cost limitations. Some much larger open-source models that could have shown‬
‭enhanced results in both the baseline and their scores with the prompting techniques include‬
‭Meta Llama 3.1-405B and Mixtral 8x22B. Anthropic’s Claude 3.5 Sonnet is also a closed-source‬
‭model viable for testing that has similar performance as GPT-4o in logical reasoning.‬

‭This work helps to present prompting methods as crucial elements in improving the reasoning of‬
‭large language models. However, future work should also consider how well these methods‬
‭generalize to a much wider array of tasks and models. Another potential viable direction could‬
‭be in hybrid methods that combine CoT with other approaches, for example, program-based‬
‭prompting. In addition, as LLMs continue to be more and more applied to complex reasoning‬
‭tasks such as mathematics (10), science (25), and legal analysis (26), these prompting‬
‭strategies will be important for extending their capabilities.‬

‭Conclusion‬
‭In this paper, we have worked towards evaluating the effectiveness of various prominent‬
‭prompting techniques on multiple large language models, namely GPT-4o, Meta Llama 3.1-70B,‬
‭Mixtral 8x7B v0.1, and Google Gemma 2. We have also presented a brief on each of the‬
‭prompting methods used and their functionality. The models were evaluated based on a random‬
‭set of 100 samples from the easy, medium, and hard subsets of the Mathematics Dataset‬
‭originally released by Google DeepMind (15). These samples were fed one-by-one to the‬
‭models and a score was calculated based on model output for the predicted number. GPT-4o‬
‭performed the best overall, with good baseline scores and an excellent improvement in score‬
‭with the implementation of all of the prompting techniques. Meta Llama 3.1-70B also performed‬
‭well. It did not do very well in the baseline testing but had many score improvements with the‬
‭prompting techniques.‬

‭Based on our data we have seen that Chain-of-Thought prompting serves as the best overall‬
‭prompting technique to improve the logical reasoning capabilities of the transformer models we‬
‭tested. The other prompting methods also worked quite well for most cases, with zero-shot CoT‬
‭providing promising performance increases with very little prompt engineering required. Future‬
‭work can focus on further evaluation of these techniques and others along with a more diverse‬
‭set of models to further comment on the efficacy of these prompting models and their relevance‬
‭in improving LLM performance. Investigating how LLM reasoning capabilities can be enhanced‬
‭is crucial for their increased use of mathematics and other subject areas that may require‬



‭excellent logical reasoning. This paper has evaluated four prompting methods with four models‬
‭and presented Chain-of-Thought prompting as the most effective overall.‬
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‭Appendix‬
‭A. Prompts used for each technique‬
‭Baseline:‬

‭You will be given a sequence of numbers. You need to predict the next‬
‭number, with your output containing only this predicted number.‬
‭<SEQUENCE/>‬

‭Few-Shot Prompting:‬

‭“Example 1: What comes next: 13, 14, 11, 4, -7?.‬‭Solution: -22;‬
‭Example 2: What comes next: 386, 384, 382? Solution: 380; Example 3:‬
‭What comes next: -2737, -2134, -1531? Solution: -928; Make sure the‬
‭predicted number is clearly visible at the end of your answer in the‬
‭form: 'Predicted number: <NUM>'. Question: <SEQUENCE/>”‬

‭Chain-of-Thought Prompting:‬

‭“Example 1: What comes next: 13, 14, 11, 4, -7?. Solution: The common‬
‭difference between the terms is 1, -3, -7, -11. The common difference‬
‭between these terms is -4, -4, -4. Since the common difference is‬
‭changing by -4 every time, the next common difference will be -11 +‬



‭-4 = -15. Hence, the next term will be -7 + (-15) = -22; Example 2:‬
‭What comes next: 386, 384, 382? Solution: The common difference‬
‭between the terms is -2, -2. This common difference does not seem to‬
‭be changing. Hence, the next term will be 382 + -2 = 380; Example 3:‬
‭What comes next: -2737, -2134, -1531? Solution: The common difference‬
‭between the terms is 603, 603. It stays the same. Hence, the next‬
‭term is -1531 + 603 = -928. Make sure the predicted number is clearly‬
‭visible at the end of your answer in the form: 'Predicted number:‬
‭<NUM>'. Question: <SEQUENCE/>”‬

‭Zero-Shot Chain-of-Thought:‬

‭“<SEQUENCE/>. Make sure the predicted number is clearly visible at‬
‭the end of your answer in the form: 'Predicted number: <NUM>'. Let’s‬
‭think step-by-step. ”‬

‭Contrastive Chain-of-Thought:‬

‭“Example 1 (wrong): What comes next: 13, 14, 11, 4, -7?. Solution‬
‭(wrong): the common difference is 1, -3, -7, and -11. The difference‬
‭between these common differences is -4. Hence, the next term is -7 +‬
‭(-4) = -11; Example 2 (wrong): What comes next: 386, 384, 382?‬
‭Solution (wrong): The common difference between the terms is -2, -2.‬
‭The difference between these differences is 0. Hence, the next term‬
‭is 382 + 0 = 382; Example 3 (correct): What comes next: -2737, -2134,‬
‭-1531? Solution (correct): The common difference between the terms is‬
‭603, 603. It stays the same. Hence, the next term is -1531 + 603 =‬
‭-928; Make sure the predicted number is clearly visible at the end of‬
‭your answer in the form: 'Predicted number: <NUM>'. Question:‬
‭<SEQUENCE/>”‬

‭B. Incorrect Output Extracts‬
‭Mixtral 8x7B Instruct v0.1 Output‬

‭What comes next: -1661, -2064, -2477, -2900, -3333?‬
‭The common difference between the terms is 403, 413, 423, 433. It is‬
‭increasing by 10 each time. So, the next common difference will be‬
‭433 + 10 = 443. Hence, the next term will be -3333 + 443 = -2890.‬

‭Predicted number: -2890‬

‭What comes next: 1719, 1928, 2551, 3798, 5879, 9004, 13383, 19226?‬
‭The sequence appears to be increasing by a factor each time. The‬
‭common ratio between the terms is 1.133 (approximately), and it seems‬
‭to be staying the same. Hence, the next term will be 19226 \* 1.133 =‬
‭21799.68 or approximately 21799 (when rounded to the nearest whole‬
‭number).‬



‭Predicted number: 21799‬

‭What is next in -37, -961, -3615, -8863, -17569, -30597?‬
‭The sequence appears to be formed by multiplying the previous term by‬
‭-25 and then adding a constant. We can find the constant by solving‬
‭for it in the first two terms: -961 = (-25 \* -37) + c, so c = -961 +‬
‭(25 \* 37) = 2469.‬

‭Now we can find the next term by multiplying the last term by -25 and‬
‭adding the constant: -30597 \* -25 + 2469 = 764925 + 2469 = 767394.‬

‭Predicted number: 767394‬

‭Google Gemma 2‬

‭What comes next: 682, 1309, 1960, 2635, 3334, 4057, 4804?‬
‭The common difference between the terms is 627, 651, 675, 699, 723,‬
‭723. The common difference between these terms is 24, 24, 24, 24, 0.‬
‭Since the common difference is changing by 0 every time, the next‬
‭common difference will be 723 + 0 = 723. Hence, the next term will be‬
‭4804 + 723 = 5527.‬

‭Predicted number: 5527‬

‭What is the next term in -3043, -3154, -3321, -3544, -3823, -4158?‬
‭The common difference between the terms is -111, -167, -223, -279,‬
‭-335. The common difference between these terms is -56, -56, -56,‬
‭-56. Since the common difference is constant, the next common‬
‭difference will be -56. Hence, the next term will be -4158 + (-56) =‬
‭-4214.‬

‭Predicted number: -4214‬


