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Abstract

This paper provides a comprehensive evaluation of advanced prompting techniques and the
improvements they result in for logical reasoning for large language models (LLMs), with a
particular focus on transformer architectures. Reasoning is imperative for LLMs to be able to
propose solutions, especially in a more technical scenario, effectively. The study aims to
address the limitations of current LLMs in handling complex pattern recognition and sequence
prediction tasks by working with these prompting techniques and models. We assess the
effectiveness of methods such as Chain-of-Thought (CoT) prompting across LLMs that include
GPT-40, Meta Llama 3.1-70B, Mixtral 8x7B v0.1, and Google Gemma 2. We find that multiple
prompting techniques consistently enhance the reasoning capabilities of LLMs, leading to
notable improvements in complex task performance, especially for GPT-40 and Meta Llama
3.1-70B. Techniques such as zero-shot CoT and retrieval-based prompting show promise, CoT
stands out as the most effective with an enhanced score of 90% up from 47% for the hard
testing set with GPT-40. Some models go wrong through arithmetic problems as a result of
following prompting techniques. This paper's findings offer insights into the strengths and
limitations of current LLM prompting strategies, with implications for improving future model
development through prompt-aware fine-tuning and architectural adaptations.

Introduction

Pattern recognition has been a pillar in machine learning for a long time and has had extensive
advancements to the point where machine learning models are deployed in various applications
where pattern recognition plays a key part in their function. Pattern recognition uses machine
learning models to recognize patterns or consistencies in data (1), which can be text and also
other quantities such as image and sound. The advancement of machine learning algorithms
and their efficacy at performing these tasks have led to them being applied to many situations
including fraud detection (2) to detect anomalies in transactions or behavior, and also for
cybersecurity and possible intrusions; computer vision (3,4) to effectively recognize and classify
images and objects, extensively used in autonomous vehicles, robotics, and healthcare; and
financial forecasting (5) for market insights and predictions and for user credit scoring. These
algorithms perform reliable pattern recognition based on a vast collection of data and past
results. With sequence prediction, a smaller set of data, usually a set of integers, is available for
the model to use for its prediction based on the pattern it finds.

Similar to how pattern recognition is essential in its many applications, it is also crucial to
figuring out a solution to a problem and learning how to solve certain types of problems (6). In



an educational scenario, pattern recognition has also been shown to improve the
problem-solving capabilities and mathematics skills of students (7,8). Today, with the
mainstream use of popular LLM-based chatbots like ChatGPT (33), Claude 3.5 Sonnet (34),
and Google Gemini (35), LLMs are being used increasingly to assist students and teachers with
education and streamlining tasks. LLMs can especially be applied for personalized education
and explanations (9), with mathematics being a large possible subject for application for tasks
such as explaining solutions and patterns and guiding learning.

Although logical reasoning and pattern recognition are essential in these ways, it has been
recognized that LLMs perform poorly in many mathematics applications and problem-solving.
Natural Language Processing (NLP) is a big part of how LLMs function, but for these more
logic-based tasks, there is usually only a single correct solution, which may differ from other
LLM tasks such as outlining or planning, posing a challenge for LLMs to reach accurate
answers (10). Hallucination is also a major problem with LLMs solving mathematics problems,
and they can often guess or make assumptions while solving (11). Hallucination is when the
model generates incorrect or misleading data, such as wrongly performing an arithmetic
calculation. Math is a subject that requires a lot of reasoning and logic capabilities, and
advancements in machine learning and Al in mathematics will likely lead to improved reasoning
and logic skills, approaching human-level (12). Recently in January 2024, Google DeepMind
released a paper presenting AlphaGeometry, an Al system that is capable of complex
Olympiad-level geometry problems, combining a language model and a symbolic engine (12).
Although this is not solely an advancement in LLMs and transformer models, it is a big step in
that direction. AlphaGeometry vastly outperformed the previous state of the art, being able to
solve 25 problems in the time limit, which is approaching the average human gold medalist with
25.9 problems (13). Others have already been able to enhance the performance of
AlphaGeometry to an extent where it even surpassed the Olympiad gold-medal mark (14).

A major way that LLMs’ performance and efficiency for a certain set of tasks can be improved
without completely fine-tuning the model or training a separate model is through prompt
engineering and crafting the input to elicit a certain response or behavior from the model.
MathPrompter (15) also looks at mathematical reasoning with LLMs and combines relevant
prompting methods along with a framework and drastically improves LLM performance in these
tasks. Some popular prompting methods explored in this paper include Chain-of-Thought
prompting, which guides the model to use a logical chain-of-thought, and Zero-Shot
Chain-of-Thought prompting, which does the same in just one sentence. This paper focuses on
investigating various prompt engineering mechanisms and their applicability and efficiency in
increasing the mathematical reasoning capabilities of prevalent transformer models. We will test
and evaluate the prompting methods presented and discuss a suggested application of these
techniques that results in the highest performance.

Related Works

Prompting: The paper "A Systematic Survey of Prompt Engineering in Large Language
Models" (17) provides a comprehensive review of techniques like zero-shot, few-shot, and
Chain-of-Thought (CoT) prompting, which have shown significant promise in improving LLM



reasoning capabilities. These approaches, particularly CoT, closely align with the focus of this
paper on enhancing logical reasoning through advanced prompting techniques. This paper is
also useful to consider the various prompting methods, given its recency and presentation of
capable prompting techniques for various tasks.

Prompting with LLMs: The paper "Leveraging Large Language Models with Chain-of-Thought
and Prompt Engineering for Traffic Crash Severity Analysis and Inference" (27) explores the
application of advanced prompting techniques, specifically Chain-of-Thought (CoT), where
LLMs break down a problem into logical steps, to analyze and predict traffic crash severity. The
authors focus on how CoT can break down complex reasoning tasks in real-world scenarios,
showing how LLMs can be leveraged and improved with structured prompting to improve
decision-making and reasoning. "Language Models Can Improve Event Prediction by Few-Shot
Abductive Reasoning," (28) examines how LLMs perform event prediction by applying few-shot
learning combined with abductive reasoning. This approach allows models to infer the most
plausible explanation for an incomplete event sequence, showcasing the potential of LLMs with
prompting to improve logical reasoning when dealing with uncertain or incomplete information.

The paper "A Systematic Study and Comprehensive Evaluation of ChatGPT on Benchmark
Datasets" (29) evaluates ChatGPT's performance across 140 tasks, revealing its strengths in
open-domain knowledge, coding, and other areas but highlighting weaknesses in
commonsense reasoning and text summarization. Despite strong zero-shot performance, where
no samples are provided in the prompt, with the prompt containing only the question and the
prompt itself, the study identifies variability in results based on model versions. Similarly,
"Evaluating the Logical Reasoning Ability of ChatGPT and GPT-4" (30) compares both models
in reasoning tasks, finding GPT-4 superior but still limited, especially in out-of-distribution
scenarios and complex logic-based tasks. Both papers underline the need for improvements in
reasoning.

LLM Learning: The paper "The Counterfeit Conundrum: Can Code Language Models Grasp
the Nuances of Their Incorrect Generations?" (31) explores the challenges code models face in
identifying and correcting subtle, incorrect programs that pass basic correctness checks. It finds
that models, including GPT-4, struggle to distinguish these counterfeit outputs from correct ones
and are often less effective at repairing these mistakes than simply generating new code.
Similarly, "Large Language Models Cannot Self-Correct Reasoning Yet" (32) reveals that
models like GPT-4 fail to consistently self-correct logical reasoning errors, highlighting their
limitations in autonomously identifying and fixing mistakes without external feedback.

Baseline: Investigation Methodology

As previously mentioned, the scope of this paper is to evaluate and propose enhancements to
transformer models’ logical reasoning capabilities. For the purpose of this evaluation, we use
mathematical sequence prediction problems to gauge the logical reasoning capabilities of these
models. Predicting sequences in mathematics requires recognizing patterns and trends in
numerical data by looking for a logical structure or set of rules that the progression of terms
follows. This requires the model to deduce the relationship between consecutive terms, and the



logical reasoning is tested when looking for certain rules or patterns for a sequence. For testing
and development, we use OpenAl’'s GPT-40, its most capable model, and we also evaluate our
prompting techniques with other LLMs including Llama 3.1-8B, Google Gemma 2, and
Mistral-7B. These are some of the latest and most capable transformer-based models available
and therefore are used for our evaluation and discussion.

The data that we used in this paper for testing and final evaluation is from specifically crafted
sequences with challenging, unique, patterns, and from a large dataset: the Google DeepMind
Math Dataset (15). This dataset was initially created for a DeepMind paper analyzing the
mathematical reasoning capabilities of recurrent neural network models such as the relational
memory core (RMC) model, Long Short-Term Memory (LSTM) recurrent neural network, and
the unique Transformer model (16). In this paper, the transformer model has the best
performance out of the three types of models, outperforming the LSTM and even Simple RMC
with fewer parameters (30M). Many of the prominent LLMs in use today are also powered by
transformer architecture, and this along with its superior performance is why we chose to focus
on transformer models. The dataset itself is massive, consisting of modules including algebra,
arithmetic, calculus, comparison, measurement, numbers, polynomials, and probability. A total
of 2,010,000 examples were released per module (15). For this paper, we are focusing on and
using the data from the “sequence_next_term” submodule from the algebra module. This
consists of many next-term prediction questions that are in line with the aims of this paper.

The data that we gathered from the dataset needed to be restructured in order for it to be
effectively autonomously implemented. The preparation and testing framework that we used in
this paper is as follows:

Data Preparation

1. The relevant data (sequence_next_term submodule) was gathered from the entire
dataset files. The data classified in terms of difficulty was again labeled and fed into a
new text file.

2. This data was reformatted to adhere to the diagram below. Sets of sequences and
answers were grouped together, each in its own line, with each sequence separated by
a new blank line. This made it easier for future programs we wrote to parse through the
data:

What is next in 85, 84, 83, 827
81

What is next in 15250, 15249, 15248, 15247, 152467
15245

What comes next: 386, 384, 3822
380




3. Finally, the data was put through another program meant to restrict the sequences to
single-digit, double-digit, 3-digit, and 5-digit sequences. We noticed during initial tests
that many LLMs struggled with large arithmetic calculations. To reduce possible errors in
sequence prediction due to arithmetic errors as opposed to incorrect logical reasoning,
we restricted the sequences that we used to up to 5 digits. This limitation prevented the
LLMs from making consistent calculation errors that were observed with larger numbers.
Instead, the errors were in the reasoning process, i.e. incorrect steps or logic to solve
the problem.

Testing Framework

We used a randomized testing framework to perform tests throughout the investigation process
and to generate our final evaluation data. We created a program that randomly selects a specific
number of sequence-answer pairs from the text files of easy, medium, and hard sequences to
use for testing. These were then fed into GPT-40 the other models that we used for testing and
the predicted answers were added to a list. This was finally evaluated against the expected
answers and automatically scored.

Baseline Testing - Zero-Shot Predictions

For our baseline testing, we prompted the model to take the input sequence, process it, and
output the number that it predicts to come next in the sequence. This is a type of zero-shot
prompting technique as the model gets an unknown input without any previous examples or
instructions on how it could be approached and has to simply output its prediction. The baseline
behavior is outlined in Figure 1 below.

Instruction

Output only the
predicted
number.

User Input LLM Output

A 4 N\
Lwhat is next in 85, 84, 83, 822 H LLM

Figure 1: Baseline Testing Behavior

Methodology & Prompting Techniques

We investigated the efficacy of various prompt engineering techniques and their combinations to
improve the logical reasoning capabilities of Transformer LLMs with only input modifications. We
researched and experimented with various prompting techniques for our use case. The
prompting methods we worked with are the following:

Chain-of-Thought Prompting

LLMs sometimes fail to perform complex reasoning tasks effectively, which is where
chain-of-thought prompting really helps. Chain-of-Thought (CoT) prompting was introduced in a
paper (18) as a technique that makes LLMs use a step-by-step reasoning process. CoT
prompting results in LLM outputs that show a much better understanding of the prompt (17).



This prompting technique resulted in the highest performance in reasoning benchmarks with
90.2% accuracy using PaLM 540B. Chain-of-Thought prompting is essentially applied as a
few-shot technique. One or many samples are provided in the prompt along with a step-by-step
explanation of their solution, with the LLM following this step-by-step reasoning process for the
answer to the main question. In addition to Chain-of-Thought prompting, Zero-Shot
Chain-of-Thought prompting exists as a zero-shot way to improve model performance, which is
another technique we will evaluate.

Instruction

Example 1: What comes
next: 13, 14, 11, 4,

LLM Output

-72. Solution: The
common ...

Reasoning

User Input

What is next in 85, 84, 83, 822 }—» LLM

Figure 2: LLM behavior and output using Chain of Thought prompting

Figure 2 illustrates the framework used with this type of prompting. The prompt was given to the
LLM followed by the sequence and the output contained the reasoning of the LLM along with
the predicted number.

In-Context Retrieval with Few-Shot Prompting

Few-shot prompting is a foundational prompting technique that enables LLMs to respond to
inputs in a certain way without extensive instructions. It involves including several input-output
pairs, leading to the name “few-shot”, with the expected output for each input in the prompt (20).
CoT prompting, for example, is a few-shot technique, whereas Zero-Shot-CoT is a zero-shot
technique. Providing a few examples of tasks improves the capabilities of LLMs to perform
those tasks; however, this comes with the added token length in the input which may be
restrictive (17). The exact composition of the examples may also affect few-shot prompting
results. In-context retrieval relies on the model fetching certain data, like steps for solving the
problem, from the few-shot samples and effectively applying that information to approach the
question correctly.

Instruction

Example 1: What comes

next: 13, 14, 11, 4, LLM Output

-72. Solution:
-22; Example 2: What / Reasoning \
comes next: 386 ...
common difference

User Input

n ms i
What is next in 85, 84, 83, 822 H LLM —> Prediction

Predicted Number: 81

Figure 3: LLM behavior and output using Few-Shot prompting




Figure 3 shows the framework for the few-shot prompting. It is similar to the process with Chain
of Thought prompting: the instruction is given to the LLM followed by the sequence, and it
outputs reasoning and the prediction. Since it is few-shot prompting, explanations of the solution
are not given in the prompt.

Zero-Shot Chain-of-Thought Prompting

Zero-Shot Chain-of-Thought prompting aims to bring a very similar performance out of LLMas
as traditional Chain-of-Thought works. It consists of a simple prompt to emulate the
performance of few-shot CoT prompting. By simply adding the phrase “Let’s think step-by-step”
to a prompt, this technique enables models to follow a step-by-step reasoning process (21).
LLMs are observed to be able to create a chain of thought and execute with that using this
prompt, allowing them to produce more accurate answers.

User Input

LLM Output

85, 84, 83, 8272 / Reasoning \
Y

The sequence

What is next in

decreases by an
Instruction increasing amount

( ) each time ...
D SR Ry
Let’s think step-by-step. H LLM }—» Prediction
Predicted Number: 81
ey

Figure 4: LLM behavior and output using Zero-Shot Chain-of-Thought Prompting

Figure 4 is a representation of the function using zero-shot CoT prompting. Unlike the
frameworks for CoT and few-shot prompting, this one contains the sequence written before the
prompt to use the correct language. The phrase “Let’s think step-by-step” logically follows a
question, in this case, the sequence.

Contrastive Chain-of-Thought Prompting

This prompting method is also similar to chain of thought with a different implementation. It
addresses a key issue that LLMs usually struggle with using CoT prompting, which is identifying
their own mistakes and learning from them (17). Contrastive CoT involves providing the LLM
with examples, like CoT, with correct and also invalid reasoning to guide the model toward
figuring out the correct path of reasoning (22). The prompt contains samples for the correct
process and samples for the incorrect process for multiple sample problems. This method
outperforms traditional CoT by marginal percentages. Its applications in NLP beyond reasoning
are still questioned, but its performance for reasoning tasks similar to our scenario is
established (17).



Instruction

Example 1 (wrong):
What comes next:
13, 14, 11, 4,

-7?. Solution
(wrong) ...

User Input

LLM Output

/ Reasoning \

The common difference

between the terms is
-1, -1, -1. It stays

What is next in 85, 84, 83, 822 }—» LLM ’—»

the same, ...

Prediction

Figure 5 shows the logical path followed for contrastive CoT prompting. This, again, is similar to

Predicted Number: 81

N ——

Figure 5: LLM behavior and output using Contrastive Chain-of-Thought Prompting

the CoT and few-shot prompting framework. The instruction is given to the LLM along with the

sequence, and the LLM outputs its reasoning along with the predicted number.

( Chain-of-Thought Prompting

LLM Output

LLM

~

( Few-Shot Prompting

LLM Output

~

( Zero-Shot Chain-of-Thought Prompting

User Input

LLM Output

Let’s think step-by-step.

LLM

N

LLM Output

Figure 6: All prompting technique logic paths

Results

To evaluate the performance of the models with the baseline prompting as well as the

implementation of prompting techniques, a simple score was used. A set of samples were
randomly generated and then fed through each of the models and tested. The score ranges

from 0% - 100% with each correct answer adding to the score. For example, if the model

predicted the next term for 60 sequences correctly out of 100 total, the score will be 60%. The
models were tested autonomously by running the 100 sequences through the models one by



one. Their results were saved, and the predicted numbers at the end of each output were
extracted and added to a list. This was cross-referenced with the set of 100 input sequences’
expected answers and the score was generated. This process was done for all the models,
once for each difficulty with each prompting technique. For access to models, both the OpenAl
API (23) and Together.ai (24) were used.

Model Prompting Technique Easy Medium Hard Average
Baseline 7% 53% 48% 59%
Few-shot 98% 85% 81% 88%
Chain-of-Thought 96% 90% 91% 92%
GPT-40 Zero-Shot
Chain-of-Thought 95% 90% 84% 90%
Contrastive
Chain-of-Thought 95% 88% 80% 88%
Baseline 58% 46% 27% 44%
Few-shot 90% 88% 38% 72%
in- - o 0, 0, 0,
Meta Llama Chain-of-Thought 93% 88% 73% 85%
3.1-70B Zero-Shot
Chain-of-Thought 86% 63% 48% 66%
Contrastive
Chain-of-Thought 93% 81% 63% 79%
Baseline 63% 57% 47% 56%
Few-shot 47% 25% 13% 28%
in-of- 0, 0, 0, 0,
Mixtral-8x7B Chain-of-Thought 35% 26% 14% 25%
Instruct v0.1 Zero-Shot
Chain-of-Thought 46% 21% 11% 26%
Contrastive
Chain-of-Thought 41% 21% 12% 25%
Baseline 68% 66% 46% 60%
Few-shot 71% 62% 45% 59%
Chain-of-Thought 81% 62% 26% 56%
Google Gemma 2 Zero-Shot
Chain-of-Thought 72% 62% 43% 59%
Contrastive
Chain-of-Thought 75% 49% 36% 53%

Table 1: Transformer model scores on the difficulty-wise sequence prediction subsets for all prompting
methods tested



Average Scores For Prompting Techniques Per Model
100%

75%

50%

Average Score

25%

0%
GPT-40 Meta Llama Mixtral-8x7B Google Gemma 2
3.1-70B Instruct v0.1

Models

[l Baseline [l Few-Shot [l Chain-of-Thought [l Zero-Shot Cain-of-Thought
[ Contrastive Chain-of-Thought

Analysis/Discussion

Based on the results seen in Table 1 and the graph above, the various prompting techniques
elicit different responses in the four models that were tested. Overall, the effectiveness of these
prompting techniques to improve the performance of LLMs for logical reasoning through
sequence prediction is apparent. GPT-40 was overall the most consistent and adaptable model,
and based on benchmarks it is also the most capable model tested in this paper (24). GPT-40
achieved scores of 77%, 53%, and 48% on the baseline tests from easy, medium, and hard. It
responded extremely well to all the prompting methods we tested. In the easy category, its
highest increase was to 98% with few-shot prompting; for the medium category, both
Chain-of-Thought and Zero-Shot CoT increased the score to 90%; and for hard, the highest
score was to 91% with Chain-of-Thought prompting. Interestingly, the highest score achieved for
the hard testing set was marginally (1 point) higher than the maximum score achieved for the
medium testing set. This shows that the prompting techniques fundamentally enhance the
reasoning capabilities of GPT-40, allowing it to perform equally as well on the hardest testing set
as the medium one.

Meta’s Llama 3.1 70B also performed well. It achieved scores of 58%, 46%, and 27% for the
easy, medium, and hard sets respectively. Although these scores are slightly lower compared to
the other models, Llama 3.1 also performed very well with the prompting techniques. Using
few-shot prompting, its score for the easy set increased to 90%, for the medium set increased to
88%, and for the hard set increased to 38%. The slightly smaller improvement compared to
GPT-40 could be because of the smaller size of the model at 70 billion parameters. Llama
3.1-405B may show performance closer to that of GPT-40. Especially for the easy and medium
sets, the increase is quite significant, with the hard set score also increasing by a sizable
amount. Few shot prompting does not contain any explanation, and this high increase in score
can signify that models use the given examples as practice, and use that knowledge about how
they solved the example question to solve the actual questions, indicating the rise in score. For



CoT prompting, it achieved scores of 93%, 88%, and 73% for easy, medium, and hard
respectively. These scores reflect the promising capabilities that Chain-of-Thought prompting
displays. Zero-Shot CoT had scores that were also impressive considering the small size of the
prompt, with almost no additional information or effort required to implement. Contrastive CoT
also provided a satisfactory increase in performance. The contradictory explanations provided in
the prompt help the LLM avoid hallucinations and incorrect logic while solving the sequences.

Mixtral 8x7B, on the other hand, did not work well with the various prompting methods used at
all. In fact, with all prompting methods, for the easy, medium, and hard sets, Mixtral’s scores
dropped, with the lowest score being 11% using zero-shot CoT prompting on the hard set, but
all other hard set scores were also comparable between 12% - 14%. This was quite an
unexpected observation given the success of GPT-40 and Llama 3.1 using the same prompting
methods. Mixtral even outperformed Llama in the baseline test without any prompting, but its
performance was significantly reduced with the prompting methods.

What is the next term in 36, -236, -1076¢, -2772, -5612, -9884, -15876,
-238767

The sequence given seems to follow a pattern where the common difference
between consecutive terms increases by a constant value each time.

Starting from the first term, the common differences are:
-200, -836, -1696, -2840, -3942, -4972

If we look at the differences between these common differences, we can see
that they increase by 636 each time:

636, 636, 636, 636, 636

So, if we continue this pattern, the next common difference should be:
-4972 + 636 = -4336

And the next term in the sequence would be:

-23876 + (-4336) = -28212

Predicted number: -28212

Figure 7: Extract from a Mixtral 8x7B Instruct v0.1 Output

Figure 6 shows a sample output of the Mixtral model on the hard testing set using
Chain-of-Thought prompting. As seen in the figure, the logic used by the model is correct. It is
relevant to the sequences in the dataset and matches the logic from the chain-of-thought
prompt. It looks for patterns in the common difference and aims to extrapolate the next term
based on that which is correct logic. The problem arises in the calculations. There are many
arithmetic hallucinations in this solution, such as the difference between -236 and 36 being
listed as -200, which should be -272. We observed several other examples where the model
used the correct logic but got calculations in the middle wrong which led to an incorrect final
answer. Given the strong baseline performance of the model, the prompting methods could be



hindering the arithmetic capability of the model. In the prompts, example solutions are written
out in a sentence-based logical form as opposed to a lengthy explanation of each step (the
subtractions and each operation needed), which may benefit the logical reasoning but take
away from the arithmetic calculations of the model in this scenario. Overall, despite the low
score, We observed that the logic on a majority of the wrong questions was actually correct,
indicating that the prompting techniques did at least work to increase the reasoning ability of the
LLM.

Google’s Gemma 2 also did not respond the best to the prompting methods. Its baseline scores
were 68%, 66%, and 46% for easy, medium, and hard respectively. Its score in the easy testing
set increased across the board. The highest increase on the easy set was to 81% using
Chain-of-Thought prompting. On the medium testing set, the score dropped from 66% to 62%
for CoT, few-shot, and zero-shot CoT. The score was lowest with contrastive CoT with 49%. Its
hard set score of 46% stayed at around the same point with few-shot and zero-shot CoT
prompting, with 45% and 43% respectively, The scores with CoT and contrastive CoT had a
more significant drop. This trend seems to indicate that, at least for harder functions, the
reasoning provided in the Chain-of-Thought prompts that proves effective for other models
hindered Gemma 2’s reasoning process. Figure 7 below depicts how the model can have
incorrect reasoning: it correctly calculated the differences and identified the constant difference,
but made a mistake when adding to the previous term to find the next term. Instead of adding
-148, it adds -156, which is wrong.

What is next in -22471, -22721, -22969, -23209, -23435, -23641, -238217
The common difference between the terms is -250, -248, -240, -226, -200,
-180. The common difference between these terms is 2, 8, 14, 20, 26. The
common difference between these terms is 6, 6, 6, 6. Since the common
difference is constant, the next common difference will be 6. Hence, the
next term will be -23821 + (-154) = -24075.

Figure 8: Extract from a Google Gemma 2 Output

Overall, the results for the prompting methods were promising. For Google Gemma 2 and
Mixtral 8x7B, the prompting methods did not turn out very effective, however, Google Gemma 2
did not suffer a very big performance downgrade across the board as was observed with Mixtral.
On the other hand with Meta Llama 3.1-70B and OpenAl GPT-40, the prompting methods were
extremely effective in increasing the performance of the models. Overall, Chain-of-Thought
prompting was the most effective for all models. Few-shot prompting did work well to increase
the performance for both GPT-40 and Llama 3.1-70B, but wasn’t as effective as CoT, and
provided a bigger increase in the easy testing set over the medium or hard. Contrastive CoT did
work to remove some hallucinations in the models based on qualitative observations but was
not as effective as CoT. Zero-shot CoT served as a great way to increase model performance
without a heavy application. Compared to the other three prompting techniques which are all
few-shot, zero-shot CoT performed extremely well as a zero-shot alternative with a simple
implementation. It also outperformed contrastive CoT and few-shot prompting in certain areas.



Limitations & Discussion

As discussed in the analysis, some prompts that followed the shorter prompting style framework
seemed to be affecting the model’'s arithmetic capabilities. Some models like Mixtral 8x7B
struggled with these prompts, as they were trying to emulate the solution given in the prompt,
which was written in sentences containing overarching steps, not containing every single step
and operation. This could be limiting the capabilities of those models, but it is generally how
prompting is carried out. Complete, extremely detailed, operation-by-operation prompting is not
usually carried out (17) and this would be very tedious for prompt generation. Additionally, we
were not able to use some of the larger open-source and closed-source models due to
computing and cost limitations. Some much larger open-source models that could have shown
enhanced results in both the baseline and their scores with the prompting techniques include
Meta Llama 3.1-405B and Mixtral 8x22B. Anthropic’s Claude 3.5 Sonnet is also a closed-source
model viable for testing that has similar performance as GPT-40 in logical reasoning.

This work helps to present prompting methods as crucial elements in improving the reasoning of
large language models. However, future work should also consider how well these methods
generalize to a much wider array of tasks and models. Another potential viable direction could
be in hybrid methods that combine CoT with other approaches, for example, program-based
prompting. In addition, as LLMs continue to be more and more applied to complex reasoning
tasks such as mathematics (10), science (25), and legal analysis (26), these prompting
strategies will be important for extending their capabilities.

Conclusion

In this paper, we have worked towards evaluating the effectiveness of various prominent
prompting techniques on multiple large language models, namely GPT-40, Meta Llama 3.1-70B,
Mixtral 8x7B v0.1, and Google Gemma 2. We have also presented a brief on each of the
prompting methods used and their functionality. The models were evaluated based on a random
set of 100 samples from the easy, medium, and hard subsets of the Mathematics Dataset
originally released by Google DeepMind (15). These samples were fed one-by-one to the
models and a score was calculated based on model output for the predicted number. GPT-40
performed the best overall, with good baseline scores and an excellent improvement in score
with the implementation of all of the prompting techniques. Meta Llama 3.1-70B also performed
well. It did not do very well in the baseline testing but had many score improvements with the
prompting techniques.

Based on our data we have seen that Chain-of-Thought prompting serves as the best overall
prompting technique to improve the logical reasoning capabilities of the transformer models we
tested. The other prompting methods also worked quite well for most cases, with zero-shot CoT
providing promising performance increases with very little prompt engineering required. Future
work can focus on further evaluation of these techniques and others along with a more diverse
set of models to further comment on the efficacy of these prompting models and their relevance
in improving LLM performance. Investigating how LLM reasoning capabilities can be enhanced
is crucial for their increased use of mathematics and other subject areas that may require



excellent logical reasoning. This paper has evaluated four prompting methods with four models
and presented Chain-of-Thought prompting as the most effective overall.
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Appendix

A. Prompts used for each technique
Baseline:

You will be given a sequence of numbers. You need to predict the next
number, with your output containing only this predicted number.
<SEQUENCE/>

Few-Shot Prompting:

“Example 1: What comes next: 13, 14, 11, 4, -7?. Solution: -22;
Example 2: What comes next: 386, 384, 382? Solution: 380; Example 3:
What comes next: -2737, -2134, -15317? Solution: -928; Make sure the
predicted number is clearly visible at the end of your answer in the
form: 'Predicted number: <NUM>'. Question: <SEQUENCE/>"

Chain-of-Thought Prompting:

“Example 1: What comes next: 13, 14, 11, 4, -7?. Solution: The common
difference between the terms is 1, -3, -7, -11. The common difference
between these terms is -4, -4, -4. Since the common difference is
changing by -4 every time, the next common difference will be -11 +




-4 = -15. Hence, the next term will be -7 + (-15) = -22; Example 2:
What comes next: 386, 384, 3827 Solution: The common difference
between the terms is -2, -2. This common difference does not seem to
be changing. Hence, the next term will be 382 + -2 = 380; Example 3:
What comes next: -2737, -2134, -15317? Solution: The common difference
between the terms is 603, 603. It stays the same. Hence, the next
term is -1531 + 603 = -928. Make sure the predicted number is clearly
visible at the end of your answer in the form: 'Predicted number:
<NUM>'. Question: <SEQUENCE/>"

Zero-Shot Chain-of-Thought:

“<SEQUENCE/>. Make sure the predicted number is clearly visible at
the end of your answer in the form: 'Predicted number: <NUM>'. Let’s
think step-by-step. ”

Contrastive Chain-of-Thought:

“Example 1 (wrong): What comes next: 13, 14, 11, 4, -7?. Solution
(wrong) : the common difference is 1, -3, -7, and -11. The difference
between these common differences is -4. Hence, the next term is -7 +
(-4) = -11; Example 2 (wrong): What comes next: 386, 384, 3827
Solution (wrong): The common difference between the terms is -2, -2.
The difference between these differences is 0. Hence, the next term
is 382 + 0 = 382; Example 3 (correct): What comes next: -2737, -2134,
-1531? Solution (correct): The common difference between the terms is
603, 603. It stays the same. Hence, the next term is -1531 + 603 =
-928; Make sure the predicted number is clearly visible at the end of
your answer in the form: 'Predicted number: <NUM>'. Question:
<SEQUENCE/>"

B. Incorrect Output Extracts
Mixtral 8x7B Instruct v0.1 Output

What comes next: -1661, -2004, -2477, -2900, -33337?

The common difference between the terms is 403, 413, 423, 433. It is
increasing by 10 each time. So, the next common difference will be
433 + 10 = 443. Hence, the next term will be -3333 + 443 = -2890.

Predicted number: -2890

What comes next: 1719, 1928, 2551, 3798, 5879, 9004, 13383, 192267
The sequence appears to be increasing by a factor each time. The
common ratio between the terms is 1.133 (approximately), and it seems
to be staying the same. Hence, the next term will be 19226 \* 1.133 =
21799.68 or approximately 21799 (when rounded to the nearest whole
number) .




Predicted number: 21799

What is next in -37, -961, -3615, -8863, -17569, -305977

The sequence appears to be formed by multiplying the previous term by
-25 and then adding a constant. We can find the constant by solving
for it in the first two terms: -961 = (-25 \* -37) + ¢, so ¢ = -961 +
(25 \* 37) = 2469.

Now we can find the next term by multiplying the last term by -25 and
adding the constant: -30597 \* -25 + 2469 = 764925 + 2469 = 767394.

Predicted number: 767394

Google Gemma 2

What comes next: 682, 1309, 1960, 2635, 3334, 4057, 48047

The common difference between the terms is 627, 651, 675, 699, 723,
723. The common difference between these terms is 24, 24, 24, 24, 0.
Since the common difference is changing by 0 every time, the next
common difference will be 723 + 0 = 723. Hence, the next term will be
4804 + 723 = 5527.

Predicted number: 5527

What is the next term in -3043, -3154, -3321, -3544, -3823, -4158?
The common difference between the terms is -111, -167, -223, -279,
-335. The common difference between these terms is -56, -56, -5¢,
-56. Since the common difference is constant, the next common
difference will be -56. Hence, the next term will be -4158 + (-56) =
-4214.

Predicted number: -4214




