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 Abstract 
 This paper provides a comprehensive evaluation of advanced prompting techniques and the 
 improvements they result in for logical reasoning for large language models (LLMs), with a 
 particular focus on transformer architectures. Reasoning is imperative for LLMs to be able to 
 propose solutions, especially in a more technical scenario, effectively. The study aims to 
 address the limitations of current LLMs in handling complex pattern recognition and sequence 
 prediction tasks by working with these prompting techniques and models. We assess the 
 effectiveness of methods such as Chain-of-Thought (CoT) prompting across LLMs that include 
 GPT-4o, Meta Llama 3.1-70B, Mixtral 8x7B v0.1, and Google Gemma 2. We find that multiple 
 prompting techniques consistently enhance the reasoning capabilities of LLMs, leading to 
 notable improvements in complex task performance, especially for GPT-4o and Meta Llama 
 3.1-70B. Techniques such as zero-shot CoT and retrieval-based prompting show promise, CoT 
 stands out as the most effective with an enhanced score of 90% up from 47%  for the hard 
 testing set with GPT-4o. Some models go wrong through arithmetic problems as a result of 
 following prompting techniques. This paper's findings offer insights into the strengths and 
 limitations of current LLM prompting strategies, with implications for improving future model 
 development through prompt-aware fine-tuning and architectural adaptations. 

 Introduction 
 Pattern recognition has been a pillar in machine learning for a long time and has had extensive 
 advancements to the point where machine learning models are deployed in various applications 
 where pattern recognition plays a key part in their function. Pattern recognition uses machine 
 learning models to recognize patterns or consistencies in data (1), which can be text and also 
 other quantities such as image and sound. The advancement of machine learning algorithms 
 and their efficacy at performing these tasks have led to them being applied to many situations 
 including fraud detection (2) to detect anomalies in transactions or behavior, and also for 
 cybersecurity and possible intrusions; computer vision (3,4) to effectively recognize and classify 
 images and objects, extensively used in autonomous vehicles, robotics, and healthcare; and 
 financial forecasting (5) for market insights and predictions and for user credit scoring. These 
 algorithms perform reliable pattern recognition based on a vast collection of data and past 
 results. With sequence prediction, a smaller set of data, usually a set of integers, is available for 
 the model to use for its prediction based on the pattern it finds. 

 Similar to how pattern recognition is essential in its many applications, it is also crucial to 
 figuring out a solution to a problem and learning how to solve certain types of problems (6). In 



 an educational scenario, pattern recognition has also been shown to improve the 
 problem-solving capabilities and mathematics skills of students (7,8). Today, with the 
 mainstream use of popular LLM-based chatbots like ChatGPT (33), Claude 3.5 Sonnet (34), 
 and Google Gemini (35), LLMs are being used increasingly to assist students and teachers with 
 education and streamlining tasks. LLMs can especially be applied for personalized education 
 and explanations (9), with mathematics being a large possible subject for application for tasks 
 such as explaining solutions and patterns and guiding learning. 

 Although logical reasoning and pattern recognition are essential in these ways, it has been 
 recognized that LLMs perform poorly in many mathematics applications and problem-solving. 
 Natural Language Processing (NLP) is a big part of how LLMs function, but for these more 
 logic-based tasks, there is usually only a single correct solution, which may differ from other 
 LLM tasks such as outlining or planning, posing a challenge for LLMs to reach accurate 
 answers (10). Hallucination is also a major problem with LLMs solving mathematics problems, 
 and they can often guess or make assumptions while solving (11). Hallucination is when the 
 model generates incorrect or misleading data, such as wrongly performing an arithmetic 
 calculation. Math is a subject that requires a lot of reasoning and logic capabilities, and 
 advancements in machine learning and AI in mathematics will likely lead to improved reasoning 
 and logic skills, approaching human-level (12). Recently in January 2024, Google DeepMind 
 released a paper presenting AlphaGeometry, an AI system that is capable of complex 
 Olympiad-level geometry problems, combining a language model and a symbolic engine (12). 
 Although this is not solely an advancement in LLMs and transformer models, it is a big step in 
 that direction. AlphaGeometry vastly outperformed the previous state of the art, being able to 
 solve 25 problems in the time limit, which is approaching the average human gold medalist with 
 25.9 problems (13). Others have already been able to enhance the performance of 
 AlphaGeometry to an extent where it even surpassed the Olympiad gold-medal mark (14). 

 A major way that LLMs’ performance and efficiency for a certain set of tasks can be improved 
 without completely fine-tuning the model or training a separate model is through prompt 
 engineering and crafting the input to elicit a certain response or behavior from the model. 
 MathPrompter (15) also looks at mathematical reasoning with LLMs and combines relevant 
 prompting methods along with a framework and drastically improves LLM performance in these 
 tasks. Some popular prompting methods explored in this paper include Chain-of-Thought 
 prompting, which guides the model to use a logical chain-of-thought, and Zero-Shot 
 Chain-of-Thought prompting, which does the same in just one sentence. This paper focuses on 
 investigating various prompt engineering mechanisms and their applicability and efficiency in 
 increasing the mathematical reasoning capabilities of prevalent transformer models. We will test 
 and evaluate the prompting methods presented and discuss a suggested application of these 
 techniques that results in the highest performance. 

 Related Works 
 Prompting:  The paper "A Systematic Survey of Prompt  Engineering in Large Language 
 Models" (17) provides a comprehensive review of techniques like zero-shot, few-shot, and 
 Chain-of-Thought (CoT) prompting, which have shown significant promise in improving LLM 



 reasoning capabilities. These approaches, particularly CoT, closely align with the focus of this 
 paper on enhancing logical reasoning through advanced prompting techniques. This paper is 
 also useful to consider the various prompting methods, given its recency and presentation of 
 capable prompting techniques for various tasks. 

 Prompting with LLMs:  The paper "Leveraging Large Language  Models with Chain-of-Thought 
 and Prompt Engineering for Traffic Crash Severity Analysis and Inference" (27) explores the 
 application of advanced prompting techniques, specifically Chain-of-Thought (CoT), where 
 LLMs break down a problem into logical steps, to analyze and predict traffic crash severity. The 
 authors focus on how CoT can break down complex reasoning tasks in real-world scenarios, 
 showing how LLMs can be leveraged and improved with structured prompting to improve 
 decision-making and reasoning. "Language Models Can Improve Event Prediction by Few-Shot 
 Abductive Reasoning," (28) examines how LLMs perform event prediction by applying few-shot 
 learning combined with abductive reasoning. This approach allows models to infer the most 
 plausible explanation for an incomplete event sequence, showcasing the potential of LLMs with 
 prompting to improve logical reasoning when dealing with uncertain or incomplete information. 

 The paper "A Systematic Study and Comprehensive Evaluation of ChatGPT on Benchmark 
 Datasets" (29) evaluates ChatGPT's performance across 140 tasks, revealing its strengths in 
 open-domain knowledge, coding, and other areas but highlighting weaknesses in 
 commonsense reasoning and text summarization. Despite strong zero-shot performance, where 
 no samples are provided in the prompt, with the prompt containing only the question and the 
 prompt itself, the study identifies variability in results based on model versions. Similarly, 
 "Evaluating the Logical Reasoning Ability of ChatGPT and GPT-4" (30) compares both models 
 in reasoning tasks, finding GPT-4 superior but still limited, especially in out-of-distribution 
 scenarios and complex logic-based tasks. Both papers underline the need for improvements in 
 reasoning. 

 LLM Learning:  The paper "The Counterfeit Conundrum:  Can Code Language Models Grasp 
 the Nuances of Their Incorrect Generations?" (31) explores the challenges code models face in 
 identifying and correcting subtle, incorrect programs that pass basic correctness checks. It finds 
 that models, including GPT-4, struggle to distinguish these counterfeit outputs from correct ones 
 and are often less effective at repairing these mistakes than simply generating new code. 
 Similarly, "Large Language Models Cannot Self-Correct Reasoning Yet" (32) reveals that 
 models like GPT-4 fail to consistently self-correct logical reasoning errors, highlighting their 
 limitations in autonomously identifying and fixing mistakes without external feedback. 

 Baseline: Investigation Methodology 
 As previously mentioned, the scope of this paper is to evaluate and propose enhancements to 
 transformer models’ logical reasoning capabilities. For the purpose of this evaluation, we use 
 mathematical sequence prediction problems to gauge the logical reasoning capabilities of these 
 models. Predicting sequences in mathematics requires recognizing patterns and trends in 
 numerical data by looking for a logical structure or set of rules that the progression of terms 
 follows. This requires the model to deduce the relationship between consecutive terms, and the 



 logical reasoning is tested when looking for certain rules or patterns for a sequence. For testing 
 and development, we use OpenAI’s GPT-4o, its most capable model, and we also evaluate our 
 prompting techniques with other LLMs including Llama 3.1-8B, Google Gemma 2, and 
 Mistral-7B. These are some of the latest and most capable transformer-based models available 
 and therefore are used for our evaluation and discussion. 

 The data  that we used in this paper for testing and  final evaluation is from specifically crafted 
 sequences with challenging, unique, patterns, and from a large dataset: the Google DeepMind 
 Math Dataset (15). This dataset was initially created for a DeepMind paper analyzing the 
 mathematical reasoning capabilities of recurrent neural network models such as the relational 
 memory core (RMC) model, Long Short-Term Memory (LSTM) recurrent neural network, and 
 the unique Transformer model (16). In this paper, the transformer model has the best 
 performance out of the three types of models, outperforming the LSTM and even Simple RMC 
 with fewer parameters (30M). Many of the prominent LLMs in use today are also powered by 
 transformer architecture, and this along with its superior performance is why we chose to focus 
 on transformer models. The dataset itself is massive, consisting of modules including algebra, 
 arithmetic, calculus, comparison, measurement, numbers, polynomials, and probability. A total 
 of 2,010,000 examples were released per module (15). For this paper, we are focusing on and 
 using the data from the “sequence_next_term” submodule from the algebra module. This 
 consists of many next-term prediction questions that are in line with the aims of this paper. 

 The data that we gathered from the dataset needed to be restructured in order for it to be 
 effectively autonomously implemented. The preparation and testing framework that we used in 
 this paper is as follows: 

 Data Preparation 
 1.  The relevant data (sequence_next_term submodule) was gathered from the entire 

 dataset files. The data classified in terms of difficulty was again labeled and fed into a 
 new text file. 

 2.  This data was reformatted to adhere to the diagram below. Sets of sequences and 
 answers were grouped together, each in its own line, with each sequence separated by 
 a new blank line. This made it easier for future programs we wrote to parse through the 
 data: 

 What is next in 85, 84, 83, 82? 
 81 

 What is next in 15250, 15249, 15248, 15247, 15246? 
 15245 

 What comes next: 386, 384, 382? 
 380 
 ... 



 3.  Finally, the data was put through another program meant to restrict the sequences to 
 single-digit, double-digit, 3-digit, and 5-digit sequences. We noticed during initial tests 
 that many LLMs struggled with large arithmetic calculations. To reduce possible errors in 
 sequence prediction due to arithmetic errors as opposed to incorrect logical reasoning, 
 we restricted the sequences that we used to up to 5 digits. This limitation prevented the 
 LLMs from making consistent calculation errors that were observed with larger numbers. 
 Instead, the errors were in the reasoning process, i.e. incorrect steps or logic to solve 
 the problem. 

 Testing Framework 
 We used a randomized testing framework to perform tests throughout the investigation process 
 and to generate our final evaluation data. We created a program that randomly selects a specific 
 number of sequence-answer pairs from the text files of easy, medium, and hard sequences to 
 use for testing. These were then fed into GPT-4o the other models that we used for testing and 
 the predicted answers were added to a list. This was finally evaluated against the expected 
 answers and automatically scored. 

 Baseline Testing - Zero-Shot Predictions 
 For our baseline testing, we prompted the model to take the input sequence, process it, and 
 output the number that it predicts to come next in the sequence. This is a type of zero-shot 
 prompting technique as the model gets an unknown input without any previous examples or 
 instructions on how it could be approached and has to simply output its prediction. The baseline 
 behavior is outlined in Figure 1 below. 

 Figure 1:  Baseline Testing Behavior 

 Methodology & Prompting Techniques 
 We investigated the efficacy of various prompt engineering techniques and their combinations to 
 improve the logical reasoning capabilities of Transformer LLMs with only input modifications. We 
 researched and experimented with various prompting techniques for our use case. The 
 prompting methods we worked with are the following: 

 Chain-of-Thought Prompting 
 LLMs sometimes fail to perform complex reasoning tasks effectively, which is where 
 chain-of-thought prompting really helps. Chain-of-Thought (CoT) prompting was introduced in a 
 paper (18) as a technique that makes LLMs use a step-by-step reasoning process. CoT 
 prompting results in LLM outputs that show a much better understanding of the prompt (17). 



 This prompting technique resulted in the highest performance in reasoning benchmarks with 
 90.2% accuracy using PaLM 540B. Chain-of-Thought prompting is essentially applied as a 
 few-shot technique. One or many samples are provided in the prompt along with a step-by-step 
 explanation of their solution, with the LLM following this step-by-step reasoning process for the 
 answer to the main question. In addition to Chain-of-Thought prompting, Zero-Shot 
 Chain-of-Thought prompting exists as a zero-shot way to improve model performance, which is 
 another technique we will evaluate. 

 Figure 2:  LLM behavior and output using Chain of Thought  prompting 

 Figure 2 illustrates the framework used with this type of prompting. The prompt was given to the 
 LLM followed by the sequence and the output contained the reasoning of the LLM along with 
 the predicted number. 

 In-Context Retrieval with Few-Shot Prompting 
 Few-shot prompting is a foundational prompting technique that enables LLMs to respond to 
 inputs in a certain way without extensive instructions. It involves including several input-output 
 pairs, leading to the name “few-shot”, with the expected output for each input in the prompt (20). 
 CoT prompting, for example, is a few-shot technique, whereas Zero-Shot-CoT is a zero-shot 
 technique. Providing a few examples of tasks improves the capabilities of LLMs to perform 
 those tasks; however, this comes with the added token length in the input which may be 
 restrictive (17). The exact composition of the examples may also affect few-shot prompting 
 results. In-context retrieval relies on the model fetching certain data, like steps for solving the 
 problem, from the few-shot samples and effectively applying that information to approach the 
 question correctly. 

 Figure 3:  LLM behavior and output using Few-Shot prompting 



 Figure 3 shows the framework for the few-shot prompting. It is similar to the process with Chain 
 of Thought prompting: the instruction is given to the LLM followed by the sequence, and it 
 outputs reasoning and the prediction. Since it is few-shot prompting, explanations of the solution 
 are not given in the prompt. 

 Zero-Shot Chain-of-Thought Prompting 
 Zero-Shot Chain-of-Thought prompting aims to bring a very similar performance out of LLMas 
 as traditional Chain-of-Thought works. It consists of a simple prompt to emulate the 
 performance of few-shot CoT prompting. By simply adding the phrase “Let’s think step-by-step” 
 to a prompt, this technique enables models to follow a step-by-step reasoning process (21). 
 LLMs are observed to be able to create a chain of thought and execute with that using this 
 prompt, allowing them to produce more accurate answers. 

 Figure 4:  LLM behavior and output using Zero-Shot  Chain-of-Thought Prompting 

 Figure 4 is a representation of the function using zero-shot CoT prompting. Unlike the 
 frameworks for CoT and few-shot prompting, this one contains the sequence written before the 
 prompt to use the correct language. The phrase “Let’s think step-by-step” logically follows a 
 question, in this case, the sequence. 

 Contrastive Chain-of-Thought Prompting 
 This prompting method is also similar to chain of thought with a different implementation. It 
 addresses a key issue that LLMs usually struggle with using CoT prompting, which is identifying 
 their own mistakes and learning from them (17). Contrastive CoT involves providing the LLM 
 with examples, like CoT, with correct and also invalid reasoning to guide the model toward 
 figuring out the correct path of reasoning (22). The prompt contains samples for the correct 
 process and samples for the incorrect process for multiple sample problems. This method 
 outperforms traditional CoT by marginal percentages. Its applications in NLP beyond reasoning 
 are still questioned, but its performance for reasoning tasks similar to our scenario is 
 established (17). 



 Figure 5:  LLM behavior and output using Contrastive  Chain-of-Thought Prompting 

 Figure 5 shows the logical path followed for contrastive CoT prompting. This, again, is similar to 
 the CoT and few-shot prompting framework. The instruction is given to the LLM along with the 
 sequence, and the LLM outputs its reasoning along with the predicted number. 

 Figure 6:  All prompting technique logic paths 

 Results 
 To evaluate the performance of the models with the baseline prompting as well as the 
 implementation of prompting techniques, a simple score was used. A set of samples were 
 randomly generated and then fed through each of the models and tested. The score ranges 
 from 0% - 100% with each correct answer adding to the score. For example, if the model 
 predicted the next term for 60 sequences correctly out of 100 total, the score will be 60%. The 
 models were tested autonomously by running the 100 sequences through the models one by 



 one. Their results were saved, and the predicted numbers at the end of each output were 
 extracted and added to a list. This was cross-referenced with the set of 100 input sequences’ 
 expected answers and the score was generated. This process was done for all the models, 
 once for each difficulty with each prompting technique. For access to models, both the OpenAI 
 API (23) and Together.ai (24) were used. 

 Table 1:  Transformer model scores on the difficulty-wise  sequence prediction subsets for all prompting 
 methods tested 

 Model  Prompting Technique  Easy  Medium  Hard  Average 

 GPT-4o 

 Baseline  77%  53%  48%  59% 

 Few-shot  98%  85%  81%  88% 

 Chain-of-Thought  96%  90%  91%  92% 

 Zero-Shot 
 Chain-of-Thought  95%  90%  84%  90% 

 Contrastive 
 Chain-of-Thought  95%  88%  80%  88% 

 Meta Llama 
 3.1-70B 

 Baseline  58%  46%  27%  44% 

 Few-shot  90%  88%  38%  72% 

 Chain-of-Thought  93%  88%  73%  85% 

 Zero-Shot 
 Chain-of-Thought  86%  63%  48%  66% 

 Contrastive 
 Chain-of-Thought  93%  81%  63%  79% 

 Mixtral-8x7B 
 Instruct v0.1 

 Baseline  63%  57%  47%  56% 

 Few-shot  47%  25%  13%  28% 

 Chain-of-Thought  35%  26%  14%  25% 

 Zero-Shot 
 Chain-of-Thought  46%  21%  11%  26% 

 Contrastive 
 Chain-of-Thought  41%  21%  12%  25% 

 Google Gemma 2 

 Baseline  68%  66%  46%  60% 

 Few-shot  71%  62%  45%  59% 

 Chain-of-Thought  81%  62%  26%  56% 

 Zero-Shot 
 Chain-of-Thought  72%  62%  43%  59% 

 Contrastive 
 Chain-of-Thought  75%  49%  36%  53% 



 Analysis/Discussion 
 Based on the results seen in Table 1 and the graph above, the various prompting techniques 
 elicit different responses in the four models that were tested. Overall, the effectiveness of these 
 prompting techniques to improve the performance of LLMs for logical reasoning through 
 sequence prediction is apparent. GPT-4o was overall the most consistent and adaptable model, 
 and based on benchmarks it is also the most capable model tested in this paper (24). GPT-4o 
 achieved scores of 77%, 53%, and 48% on the baseline tests from easy, medium, and hard. It 
 responded extremely well to all the prompting methods we tested. In the easy category, its 
 highest increase was to 98% with few-shot prompting; for the medium category, both 
 Chain-of-Thought and Zero-Shot CoT increased the score to 90%; and for hard, the highest 
 score was to 91% with Chain-of-Thought prompting. Interestingly, the highest score achieved for 
 the hard testing set was marginally (1 point) higher than the maximum score achieved for the 
 medium testing set. This shows that the prompting techniques fundamentally enhance the 
 reasoning capabilities of GPT-4o, allowing it to perform equally as well on the hardest testing set 
 as the medium one. 

 Meta’s Llama 3.1 70B also performed well. It achieved scores of 58%, 46%, and 27% for the 
 easy, medium, and hard sets respectively. Although these scores are slightly lower compared to 
 the other models, Llama 3.1 also performed very well with the prompting techniques. Using 
 few-shot prompting, its score for the easy set increased to 90%, for the medium set increased to 
 88%, and for the hard set increased to 38%. The slightly smaller improvement compared to 
 GPT-4o could be because of the smaller size of the model at 70 billion parameters. Llama 
 3.1-405B may show performance closer to that of GPT-4o. Especially for the easy and medium 
 sets, the increase is quite significant, with the hard set score also increasing by a sizable 
 amount. Few shot prompting does not contain any explanation, and this high increase in score 
 can signify that models use the given examples as practice, and use that knowledge about how 
 they solved the example question to solve the actual questions, indicating the rise in score. For 



 CoT prompting, it achieved scores of 93%, 88%, and 73% for easy, medium, and hard 
 respectively. These scores reflect the promising capabilities that Chain-of-Thought prompting 
 displays. Zero-Shot CoT had scores that were also impressive considering the small size of the 
 prompt, with almost no additional information or effort required to implement. Contrastive CoT 
 also provided a satisfactory increase in performance. The contradictory explanations provided in 
 the prompt help the LLM avoid hallucinations and incorrect logic while solving the sequences. 

 Mixtral 8x7B, on the other hand, did not work well with the various prompting methods used at 
 all. In fact, with all prompting methods, for the easy, medium, and hard sets, Mixtral’s scores 
 dropped, with the lowest score being 11% using zero-shot CoT prompting on the hard set, but 
 all other hard set scores were also comparable between 12% - 14%. This was quite an 
 unexpected observation given the success of GPT-4o and Llama 3.1 using the same prompting 
 methods. Mixtral even outperformed Llama in the baseline test without any prompting, but its 
 performance was significantly reduced with the prompting methods. 

 What is the next term in 36, -236, -1076, -2772, -5612, -9884, -15876, 
 -23876? 
 The sequence given seems to follow a pattern where the common difference 
 between consecutive terms increases by a constant value each time. 

 Starting from the first term, the common differences are: 
 -200, -836, -1696, -2840, -3942, -4972 

 If we look at the differences between these common differences, we can see 
 that they increase by 636 each time: 

 636, 636, 636, 636, 636 

 So, if we continue this pattern, the next common difference should be: 

 -4972 + 636 = -4336 

 And the next term in the sequence would be: 

 -23876 + (-4336) = -28212 

 Predicted number: -28212 

 Figure 7:  Extract from a Mixtral 8x7B Instruct v0.1  Output 

 Figure 6 shows a sample output of the Mixtral model on the hard testing set using 
 Chain-of-Thought prompting. As seen in the figure, the logic used by the model is correct. It is 
 relevant to the sequences in the dataset and matches the logic from the chain-of-thought 
 prompt. It looks for patterns in the common difference and aims to extrapolate the next term 
 based on that which is correct logic. The problem arises in the calculations. There are many 
 arithmetic hallucinations in this solution, such as the difference between -236 and 36 being 
 listed as -200, which should be -272. We observed several other examples where the model 
 used the correct logic but got calculations in the middle wrong which led to an incorrect final 
 answer. Given the strong baseline performance of the model, the prompting methods could be 



 hindering the arithmetic capability of the model. In the prompts, example solutions are written 
 out in a sentence-based logical form as opposed to a lengthy explanation of each step (the 
 subtractions and each operation needed), which may benefit the logical reasoning but take 
 away from the arithmetic calculations of the model in this scenario. Overall, despite the low 
 score, We observed that the logic on a majority of the wrong questions was actually correct, 
 indicating that the prompting techniques did at least work to increase the reasoning ability of the 
 LLM. 

 Google’s Gemma 2 also did not respond the best to the prompting methods. Its baseline scores 
 were 68%, 66%, and 46% for easy, medium, and hard respectively. Its score in the easy testing 
 set increased across the board. The highest increase on the easy set was to 81% using 
 Chain-of-Thought prompting. On the medium testing set, the score dropped from 66% to 62% 
 for CoT, few-shot, and zero-shot CoT. The score was lowest with contrastive CoT with 49%. Its 
 hard set score of 46% stayed at around the same point with few-shot and zero-shot CoT 
 prompting, with 45% and 43% respectively, The scores with CoT and contrastive CoT had a 
 more significant drop. This trend seems to indicate that, at least for harder functions, the 
 reasoning provided in the Chain-of-Thought prompts that proves effective for other models 
 hindered Gemma 2’s reasoning process. Figure 7 below depicts how the model can have 
 incorrect reasoning: it correctly calculated the differences and identified the constant difference, 
 but made a mistake when adding to the previous term to find the next term. Instead of adding 
 -148, it adds -156, which is wrong. 

 What is next in -22471, -22721, -22969, -23209, -23435, -23641, -23821? 
 The common difference between the terms is -250, -248, -240, -226, -206, 
 -180. The common difference between these terms is 2, 8, 14, 20, 26. The 
 common difference between these terms is 6, 6, 6, 6. Since the common 
 difference is constant, the next common difference will be 6. Hence, the 
 next term will be -23821 + (-154) = -24075. 

 Figure 8:  Extract from a Google Gemma 2 Output 

 Overall, the results for the prompting methods were promising. For Google Gemma 2 and 
 Mixtral 8x7B, the prompting methods did not turn out very effective, however, Google Gemma 2 
 did not suffer a very big performance downgrade across the board as was observed with Mixtral. 
 On the other hand with Meta Llama 3.1-70B and OpenAI GPT-4o, the prompting methods were 
 extremely effective in increasing the performance of the models. Overall, Chain-of-Thought 
 prompting was the most effective for all models. Few-shot prompting did work well to increase 
 the performance for both GPT-4o and Llama 3.1-70B, but wasn’t as effective as CoT, and 
 provided a bigger increase in the easy testing set over the medium or hard. Contrastive CoT did 
 work to remove some hallucinations in the models based on qualitative observations but was 
 not as effective as CoT. Zero-shot CoT served as a great way to increase model performance 
 without a heavy application. Compared to the other three prompting techniques which are all 
 few-shot, zero-shot CoT performed extremely well as a zero-shot alternative with a simple 
 implementation. It also outperformed contrastive CoT and few-shot prompting in certain areas. 



 Limitations & Discussion 
 As discussed in the analysis, some prompts that followed the shorter prompting style framework 
 seemed to be affecting the model’s arithmetic capabilities. Some models like Mixtral 8x7B 
 struggled with these prompts, as they were trying to emulate the solution given in the prompt, 
 which was written in sentences containing overarching steps, not containing every single step 
 and operation. This could be limiting the capabilities of those models, but it is generally how 
 prompting is carried out. Complete, extremely detailed, operation-by-operation prompting is not 
 usually carried out (17) and this would be very tedious for prompt generation. Additionally, we 
 were not able to use some of the larger open-source and closed-source models due to 
 computing and cost limitations. Some much larger open-source models that could have shown 
 enhanced results in both the baseline and their scores with the prompting techniques include 
 Meta Llama 3.1-405B and Mixtral 8x22B. Anthropic’s Claude 3.5 Sonnet is also a closed-source 
 model viable for testing that has similar performance as GPT-4o in logical reasoning. 

 This work helps to present prompting methods as crucial elements in improving the reasoning of 
 large language models. However, future work should also consider how well these methods 
 generalize to a much wider array of tasks and models. Another potential viable direction could 
 be in hybrid methods that combine CoT with other approaches, for example, program-based 
 prompting. In addition, as LLMs continue to be more and more applied to complex reasoning 
 tasks such as mathematics (10), science (25), and legal analysis (26), these prompting 
 strategies will be important for extending their capabilities. 

 Conclusion 
 In this paper, we have worked towards evaluating the effectiveness of various prominent 
 prompting techniques on multiple large language models, namely GPT-4o, Meta Llama 3.1-70B, 
 Mixtral 8x7B v0.1, and Google Gemma 2. We have also presented a brief on each of the 
 prompting methods used and their functionality. The models were evaluated based on a random 
 set of 100 samples from the easy, medium, and hard subsets of the Mathematics Dataset 
 originally released by Google DeepMind (15). These samples were fed one-by-one to the 
 models and a score was calculated based on model output for the predicted number. GPT-4o 
 performed the best overall, with good baseline scores and an excellent improvement in score 
 with the implementation of all of the prompting techniques. Meta Llama 3.1-70B also performed 
 well. It did not do very well in the baseline testing but had many score improvements with the 
 prompting techniques. 

 Based on our data we have seen that Chain-of-Thought prompting serves as the best overall 
 prompting technique to improve the logical reasoning capabilities of the transformer models we 
 tested. The other prompting methods also worked quite well for most cases, with zero-shot CoT 
 providing promising performance increases with very little prompt engineering required. Future 
 work can focus on further evaluation of these techniques and others along with a more diverse 
 set of models to further comment on the efficacy of these prompting models and their relevance 
 in improving LLM performance. Investigating how LLM reasoning capabilities can be enhanced 
 is crucial for their increased use of mathematics and other subject areas that may require 



 excellent logical reasoning. This paper has evaluated four prompting methods with four models 
 and presented Chain-of-Thought prompting as the most effective overall. 



 References 
 1.  A. Ltd, “What is pattern recognition,” Arm | The Architecture for the Digital World. 

 Accessed: Sep. 07, 2024. [Online]. Available: 
 https://www.arm.com/glossary/pattern-recognition 

 2.  A. Ali et al., “Financial Fraud Detection Based on Machine Learning: A Systematic 
 Literature Review,” Applied Sciences, vol. 12, no. 19, Art. no. 19, Jan. 2022, doi: 
 10.3390/app12199637. 

 3.  W. Zheng, H. Xie, Y. Chen, J. Roh, and H. Shin, “PIFNet: 3D Object Detection Using 
 Joint Image and Point Cloud Features for Autonomous Driving,” Applied Sciences, vol. 
 12, no. 7, Art. no. 7, Jan. 2022, doi: 10.3390/app12073686. 

 4.  X. Ren, W. Zhang, M. Wu, C. Li, and X. Wang, “Meta-YOLO: Meta-Learning for 
 Few-Shot Traffic Sign Detection via Decoupling Dependencies,” Applied Sciences, vol. 
 12, no. 11, Art. no. 11, Jan. 2022, doi: 10.3390/app12115543. 

 5.  S. Barra, S. M. Carta, A. Corriga, A. S. Podda, and D. R. Recupero, “Deep Learning and 
 Time Series-to-Image Encoding for Financial Forecasting,” IEEE/CAA JAS, vol. 7, no. 3, 
 pp. 683–693, 2020, doi: 10.1109/JAS.2020.1003132. 

 6.  M. Yasin and T. Nusantara, “Characteristics of pattern recognition to solve mathematics 
 problems in computational thinking,” AIP Conference Proceedings, vol. 2569, no. 1, p. 
 040009, Jan. 2023, doi: 10.1063/5.0112171. 

 7.  M. Bower et al., “Improving the Computational Thinking Pedagogical Capabilities of 
 School Teachers,” Australian Journal of Teacher Education, vol. 42, no. 3, Jan. 2017, 
 doi: 10.14221/ajte.2017v42n3.4. 

 8.  K. Burgoyne, K. Witteveen, A. Tolan, S. Malone, and C. Hulme, “Pattern Understanding: 
 Relationships With Arithmetic and Reading Development,” Child Development 
 Perspectives, vol. 11, no. 4, pp. 239–244, 2017, doi: 10.1111/cdep.12240. 

 9.  J. Banda, “Benefits of LLMs in Education – Jen’s Teaching and Learning Hub.” 
 Accessed: Sep. 07, 2024. [Online]. Available: 
 https://publish.illinois.edu/teaching-learninghub-byjen/benefits-of-llms-in-education/ 

 10.  S. Imani, L. Du, and H. Shrivastava, “MathPrompter: Mathematical Reasoning using 
 Large Language Models,” Mar. 03, 2023, arXiv: arXiv:2303.05398. doi: 
 10.48550/arXiv.2303.05398. 

 11.  Y. Zhuang et al., “From Static Benchmarks to Adaptive Testing: Psychometrics in AI 
 Evaluation,” Aug. 06, 2024, arXiv: arXiv:2306.10512. doi: 10.48550/arXiv.2306.10512. 

 12.  H. Melissa, “Why does AI being good at math matter?,” MIT Technology Review. 
 Accessed: Sep. 07, 2024. [Online]. Available: 
 https://www.technologyreview.com/2024/01/23/1086944/why-does-ai-being-good-at-mat 
 h-matter/ 

 13.  T. Trinh and T. Luong, “AlphaGeometry: An Olympiad-level AI system for geometry,” 
 Google DeepMind. Accessed: Sep. 07, 2024. [Online]. Available: 
 https://deepmind.google/discover/blog/alphageometry-an-olympiad-level-ai-system-for-g 
 eometry/ 

 14.  S. Sinha, A. Prabhu, P. Kumaraguru, S. Bhat, and M. Bethge, “Wu’s Method can Boost 
 Symbolic AI to Rival Silver Medalists and AlphaGeometry to Outperform Gold Medalists 



 at IMO Geometry,” Apr. 11, 2024, arXiv: arXiv:2404.06405. doi: 
 10.48550/arXiv.2404.06405. 

 15.  D. Saxton, E. Grefenstette, F. Hill, and P. Kohli, “Analysing Mathematical Reasoning 
 Abilities of Neural Models,” presented at the International Conference on Learning 
 Representations, Sep. 2018. Accessed: Sep. 07, 2024. [Online]. Available: 
 https://openreview.net/forum?id=H1gR5iR5FX 

 16.  A. Vaswani et al., “Attention is all you need,” in Proceedings of the 31st International 
 Conference on Neural Information Processing Systems, in NIPS’17. Red Hook, NY, 
 USA: Curran Associates Inc., Dec. 2017, pp. 6000–6010. 

 17.  P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, and A. Chadha, “A Systematic 
 Survey of Prompt Engineering in Large Language Models: Techniques and 
 Applications,” Feb. 05, 2024, arXiv: arXiv:2402.07927. doi: 10.48550/arXiv.2402.07927. 

 18.  J. Wei et al., “Chain-of-thought prompting elicits reasoning in large language models,” in 
 Proceedings of the 36th International Conference on Neural Information Processing 
 Systems, in NIPS ’22. Red Hook, NY, USA: Curran Associates Inc., Apr. 2024, pp. 
 24824–24837. 

 19.  W. Chen, X. Ma, X. Wang, and W. W. Cohen, “Program of Thoughts Prompting: 
 Disentangling Computation from Reasoning for Numerical Reasoning Tasks,” 
 Transactions on Machine Learning Research, Jun. 2023, Accessed: Sep. 07, 2024. 
 [Online]. Available: https://openreview.net/forum?id=YfZ4ZPt8zd 

 20.  T. Brown et al., “Language Models are Few-Shot Learners,” in Advances in Neural 
 Information Processing Systems, Curran Associates, Inc., 2020, pp. 1877–1901. 
 Accessed: Sep. 07, 2024. [Online]. Available: 
 https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.h 
 tml 

 21.  T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large Language Models are 
 Zero-Shot Reasoners,” presented at the ICML 2022 Workshop on Knowledge Retrieval 
 and Language Models, Jul. 2022. Accessed: Sep. 07, 2024. [Online]. Available: 
 https://openreview.net/forum?id=6p3AuaHAFiN 

 22.  Y. K. Chia, G. Chen, L. A. Tuan, S. Poria, and L. Bing, “Contrastive Chain-of-Thought 
 Prompting,” Nov. 15, 2023, arXiv: arXiv:2311.09277. doi: 10.48550/arXiv.2311.09277. 

 23.  “Together AI.” Accessed: Sep. 07, 2024. [Online]. Available: https://www.together.ai/ 
 24.  “LLM Leaderboard 2024.” Accessed: Sep. 07, 2024. [Online]. Available: 

 https://www.vellum.ai/llm-leaderboard 
 25.  A. Birhane, A. Kasirzadeh, D. Leslie, and S. Wachter, “Science in the age of large 

 language models,” Nat Rev Phys, vol. 5, no. 5, pp. 277–280, May 2023, doi: 
 10.1038/s42254-023-00581-4. 

 26.  J. Lai, W. Gan, J. Wu, Z. Qi, and P. S. Yu, “Large Language Models in Law: A Survey,” 
 Nov. 26, 2023, arXiv: arXiv:2312.03718. doi: 10.48550/arXiv.2312.03718. 

 27.  H. Zhen, Y. Shi, Y. Huang, J. J. Yang, and N. Liu, “Leveraging Large Language Models 
 with Chain-of-Thought and Prompt Engineering for Traffic Crash Severity Analysis and 
 Inference,” Aug. 04, 2024, arXiv: arXiv:2408.04652. doi: 10.48550/arXiv.2408.04652. 

 28.  X. Shi et al., “Language Models Can Improve Event Prediction by Few-Shot Abductive 
 Reasoning,” presented at the Thirty-seventh Conference on Neural Information 



 Processing Systems, Nov. 2023. Accessed: Sep. 07, 2024. [Online]. Available: 
 https://openreview.net/forum?id=aW9BqtRQkh 

 29.  M. T. R. Laskar, M. S. Bari, M. Rahman, M. A. H. Bhuiyan, S. Joty, and J. X. Huang, “A 
 Systematic Study and Comprehensive Evaluation of ChatGPT on Benchmark Datasets,” Jul. 
 05, 2023, arXiv: arXiv:2305.18486. Accessed: Sep. 07, 2024. [Online]. Available: 
 http://arxiv.org/abs/2305.18486 

 30.  H. Liu, R. Ning, Z. Teng, J. Liu, Q. Zhou, and Y. Zhang, “Evaluating the Logical 
 Reasoning Ability of ChatGPT and GPT-4,” May 05, 2023, arXiv: arXiv:2304.03439. doi: 
 10.48550/arXiv.2304.03439. 

 31.  A. Gu et al., “The Counterfeit Conundrum: Can Code Language Models Grasp the 
 Nuances of Their Incorrect Generations?,” CoRR, Jan. 2024, Accessed: Sep. 07, 2024. 
 [Online]. Available: https://openreview.net/forum?id=9HWiohnxoM 

 32.  J. Huang et al., “Large Language Models Cannot Self-Correct Reasoning Yet,” 
 presented at the The Twelfth International Conference on Learning Representations, 
 Oct. 2023. Accessed: Sep. 07, 2024. [Online]. Available: 
 https://openreview.net/forum?id=IkmD3fKBPQ 

 33.  “ChatGPT.” Accessed: Sep. 28, 2024. [Online]. Available: https://chatgpt.com 
 34.  “Introducing Claude 3.5 Sonnet.” Accessed: Sep. 28, 2024. [Online]. Available: 

 https://www.anthropic.com/news/claude-3-5-sonnet 
 35.  “ Gemini - chat to supercharge your ideas,” Gemini. Accessed: Sep. 28, 2024. [Online]. 

 Available: https://gemini.google.com 

 Appendix 
 A. Prompts used for each technique 
 Baseline: 

 You will be given a sequence of numbers. You need to predict the next 
 number, with your output containing only this predicted number. 
 <SEQUENCE/> 

 Few-Shot Prompting: 

 “Example 1: What comes next: 13, 14, 11, 4, -7?.  Solution: -22; 
 Example 2: What comes next: 386, 384, 382? Solution: 380; Example 3: 
 What comes next: -2737, -2134, -1531? Solution: -928; Make sure the 
 predicted number is clearly visible at the end of your answer in the 
 form: 'Predicted number: <NUM>'. Question: <SEQUENCE/>” 

 Chain-of-Thought Prompting: 

 “Example 1: What comes next: 13, 14, 11, 4, -7?. Solution: The common 
 difference between the terms is 1, -3, -7, -11. The common difference 
 between these terms is -4, -4, -4. Since the common difference is 
 changing by -4 every time, the next common difference will be -11 + 



 -4 = -15. Hence, the next term will be -7 + (-15) = -22; Example 2: 
 What comes next: 386, 384, 382? Solution: The common difference 
 between the terms is -2, -2. This common difference does not seem to 
 be changing. Hence, the next term will be 382 + -2 = 380; Example 3: 
 What comes next: -2737, -2134, -1531? Solution: The common difference 
 between the terms is 603, 603. It stays the same. Hence, the next 
 term is -1531 + 603 = -928. Make sure the predicted number is clearly 
 visible at the end of your answer in the form: 'Predicted number: 
 <NUM>'. Question: <SEQUENCE/>” 

 Zero-Shot Chain-of-Thought: 

 “<SEQUENCE/>. Make sure the predicted number is clearly visible at 
 the end of your answer in the form: 'Predicted number: <NUM>'. Let’s 
 think step-by-step. ” 

 Contrastive Chain-of-Thought: 

 “Example 1 (wrong): What comes next: 13, 14, 11, 4, -7?. Solution 
 (wrong): the common difference is 1, -3, -7, and -11. The difference 
 between these common differences is -4. Hence, the next term is -7 + 
 (-4) = -11; Example 2 (wrong): What comes next: 386, 384, 382? 
 Solution (wrong): The common difference between the terms is -2, -2. 
 The difference between these differences is 0. Hence, the next term 
 is 382 + 0 = 382; Example 3 (correct): What comes next: -2737, -2134, 
 -1531? Solution (correct): The common difference between the terms is 
 603, 603. It stays the same. Hence, the next term is -1531 + 603 = 
 -928; Make sure the predicted number is clearly visible at the end of 
 your answer in the form: 'Predicted number: <NUM>'. Question: 
 <SEQUENCE/>” 

 B. Incorrect Output Extracts 
 Mixtral 8x7B Instruct v0.1 Output 

 What comes next: -1661, -2064, -2477, -2900, -3333? 
 The common difference between the terms is 403, 413, 423, 433. It is 
 increasing by 10 each time. So, the next common difference will be 
 433 + 10 = 443. Hence, the next term will be -3333 + 443 = -2890. 

 Predicted number: -2890 

 What comes next: 1719, 1928, 2551, 3798, 5879, 9004, 13383, 19226? 
 The sequence appears to be increasing by a factor each time. The 
 common ratio between the terms is 1.133 (approximately), and it seems 
 to be staying the same. Hence, the next term will be 19226 \* 1.133 = 
 21799.68 or approximately 21799 (when rounded to the nearest whole 
 number). 



 Predicted number: 21799 

 What is next in -37, -961, -3615, -8863, -17569, -30597? 
 The sequence appears to be formed by multiplying the previous term by 
 -25 and then adding a constant. We can find the constant by solving 
 for it in the first two terms: -961 = (-25 \* -37) + c, so c = -961 + 
 (25 \* 37) = 2469. 

 Now we can find the next term by multiplying the last term by -25 and 
 adding the constant: -30597 \* -25 + 2469 = 764925 + 2469 = 767394. 

 Predicted number: 767394 

 Google Gemma 2 

 What comes next: 682, 1309, 1960, 2635, 3334, 4057, 4804? 
 The common difference between the terms is 627, 651, 675, 699, 723, 
 723. The common difference between these terms is 24, 24, 24, 24, 0. 
 Since the common difference is changing by 0 every time, the next 
 common difference will be 723 + 0 = 723. Hence, the next term will be 
 4804 + 723 = 5527. 

 Predicted number: 5527 

 What is the next term in -3043, -3154, -3321, -3544, -3823, -4158? 
 The common difference between the terms is -111, -167, -223, -279, 
 -335. The common difference between these terms is -56, -56, -56, 
 -56. Since the common difference is constant, the next common 
 difference will be -56. Hence, the next term will be -4158 + (-56) = 
 -4214. 

 Predicted number: -4214 


