
 Improving the logical reasoning
 capabilities of transformer models
 Ishaan Domkundwar

 Abstract
 This paper provides a comprehensive evaluation of advanced prompting techniques and the
 improvements they result in for logical reasoning for large language models (LLMs), with a
 particular focus on transformer architectures. Reasoning is imperative for LLMs to be able to
 propose solutions, especially in a more technical scenario, effectively. The study aims to
 address the limitations of current LLMs in handling complex pattern recognition and sequence
 prediction tasks by working with these prompting techniques and models. We assess the
 effectiveness of methods such as Chain-of-Thought (CoT) prompting across LLMs that include
 GPT-4o, Meta Llama 3.1-70B, Mixtral 8x7B v0.1, and Google Gemma 2. We find that multiple
 prompting techniques consistently enhance the reasoning capabilities of LLMs, leading to
 notable improvements in complex task performance, especially for GPT-4o and Meta Llama
 3.1-70B. Techniques such as zero-shot CoT and retrieval-based prompting show promise, CoT
 stands out as the most effective with an enhanced score of 90% up from 47% for the hard
 testing set with GPT-4o. Some models go wrong through arithmetic problems as a result of
 following prompting techniques. This paper's findings offer insights into the strengths and
 limitations of current LLM prompting strategies, with implications for improving future model
 development through prompt-aware fine-tuning and architectural adaptations.

 Introduction
 Pattern recognition has been a pillar in machine learning for a long time and has had extensive
 advancements to the point where machine learning models are deployed in various applications
 where pattern recognition plays a key part in their function. Pattern recognition uses machine
 learning models to recognize patterns or consistencies in data (1), which can be text and also
 other quantities such as image and sound. The advancement of machine learning algorithms
 and their efficacy at performing these tasks have led to them being applied to many situations
 including fraud detection (2) to detect anomalies in transactions or behavior, and also for
 cybersecurity and possible intrusions; computer vision (3,4) to effectively recognize and classify
 images and objects, extensively used in autonomous vehicles, robotics, and healthcare; and
 financial forecasting (5) for market insights and predictions and for user credit scoring. These
 algorithms perform reliable pattern recognition based on a vast collection of data and past
 results. With sequence prediction, a smaller set of data, usually a set of integers, is available for
 the model to use for its prediction based on the pattern it finds.

 Similar to how pattern recognition is essential in its many applications, it is also crucial to
 figuring out a solution to a problem and learning how to solve certain types of problems (6). In

 an educational scenario, pattern recognition has also been shown to improve the
 problem-solving capabilities and mathematics skills of students (7,8). Today, with the
 mainstream use of popular LLM-based chatbots like ChatGPT (33), Claude 3.5 Sonnet (34),
 and Google Gemini (35), LLMs are being used increasingly to assist students and teachers with
 education and streamlining tasks. LLMs can especially be applied for personalized education
 and explanations (9), with mathematics being a large possible subject for application for tasks
 such as explaining solutions and patterns and guiding learning.

 Although logical reasoning and pattern recognition are essential in these ways, it has been
 recognized that LLMs perform poorly in many mathematics applications and problem-solving.
 Natural Language Processing (NLP) is a big part of how LLMs function, but for these more
 logic-based tasks, there is usually only a single correct solution, which may differ from other
 LLM tasks such as outlining or planning, posing a challenge for LLMs to reach accurate
 answers (10). Hallucination is also a major problem with LLMs solving mathematics problems,
 and they can often guess or make assumptions while solving (11). Hallucination is when the
 model generates incorrect or misleading data, such as wrongly performing an arithmetic
 calculation. Math is a subject that requires a lot of reasoning and logic capabilities, and
 advancements in machine learning and AI in mathematics will likely lead to improved reasoning
 and logic skills, approaching human-level (12). Recently in January 2024, Google DeepMind
 released a paper presenting AlphaGeometry, an AI system that is capable of complex
 Olympiad-level geometry problems, combining a language model and a symbolic engine (12).
 Although this is not solely an advancement in LLMs and transformer models, it is a big step in
 that direction. AlphaGeometry vastly outperformed the previous state of the art, being able to
 solve 25 problems in the time limit, which is approaching the average human gold medalist with
 25.9 problems (13). Others have already been able to enhance the performance of
 AlphaGeometry to an extent where it even surpassed the Olympiad gold-medal mark (14).

 A major way that LLMs’ performance and efficiency for a certain set of tasks can be improved
 without completely fine-tuning the model or training a separate model is through prompt
 engineering and crafting the input to elicit a certain response or behavior from the model.
 MathPrompter (15) also looks at mathematical reasoning with LLMs and combines relevant
 prompting methods along with a framework and drastically improves LLM performance in these
 tasks. Some popular prompting methods explored in this paper include Chain-of-Thought
 prompting, which guides the model to use a logical chain-of-thought, and Zero-Shot
 Chain-of-Thought prompting, which does the same in just one sentence. This paper focuses on
 investigating various prompt engineering mechanisms and their applicability and efficiency in
 increasing the mathematical reasoning capabilities of prevalent transformer models. We will test
 and evaluate the prompting methods presented and discuss a suggested application of these
 techniques that results in the highest performance.

 Related Works
 Prompting: The paper "A Systematic Survey of Prompt Engineering in Large Language
 Models" (17) provides a comprehensive review of techniques like zero-shot, few-shot, and
 Chain-of-Thought (CoT) prompting, which have shown significant promise in improving LLM

 reasoning capabilities. These approaches, particularly CoT, closely align with the focus of this
 paper on enhancing logical reasoning through advanced prompting techniques. This paper is
 also useful to consider the various prompting methods, given its recency and presentation of
 capable prompting techniques for various tasks.

 Prompting with LLMs: The paper "Leveraging Large Language Models with Chain-of-Thought
 and Prompt Engineering for Traffic Crash Severity Analysis and Inference" (27) explores the
 application of advanced prompting techniques, specifically Chain-of-Thought (CoT), where
 LLMs break down a problem into logical steps, to analyze and predict traffic crash severity. The
 authors focus on how CoT can break down complex reasoning tasks in real-world scenarios,
 showing how LLMs can be leveraged and improved with structured prompting to improve
 decision-making and reasoning. "Language Models Can Improve Event Prediction by Few-Shot
 Abductive Reasoning," (28) examines how LLMs perform event prediction by applying few-shot
 learning combined with abductive reasoning. This approach allows models to infer the most
 plausible explanation for an incomplete event sequence, showcasing the potential of LLMs with
 prompting to improve logical reasoning when dealing with uncertain or incomplete information.

 The paper "A Systematic Study and Comprehensive Evaluation of ChatGPT on Benchmark
 Datasets" (29) evaluates ChatGPT's performance across 140 tasks, revealing its strengths in
 open-domain knowledge, coding, and other areas but highlighting weaknesses in
 commonsense reasoning and text summarization. Despite strong zero-shot performance, where
 no samples are provided in the prompt, with the prompt containing only the question and the
 prompt itself, the study identifies variability in results based on model versions. Similarly,
 "Evaluating the Logical Reasoning Ability of ChatGPT and GPT-4" (30) compares both models
 in reasoning tasks, finding GPT-4 superior but still limited, especially in out-of-distribution
 scenarios and complex logic-based tasks. Both papers underline the need for improvements in
 reasoning.

 LLM Learning: The paper "The Counterfeit Conundrum: Can Code Language Models Grasp
 the Nuances of Their Incorrect Generations?" (31) explores the challenges code models face in
 identifying and correcting subtle, incorrect programs that pass basic correctness checks. It finds
 that models, including GPT-4, struggle to distinguish these counterfeit outputs from correct ones
 and are often less effective at repairing these mistakes than simply generating new code.
 Similarly, "Large Language Models Cannot Self-Correct Reasoning Yet" (32) reveals that
 models like GPT-4 fail to consistently self-correct logical reasoning errors, highlighting their
 limitations in autonomously identifying and fixing mistakes without external feedback.

 Baseline: Investigation Methodology
 As previously mentioned, the scope of this paper is to evaluate and propose enhancements to
 transformer models’ logical reasoning capabilities. For the purpose of this evaluation, we use
 mathematical sequence prediction problems to gauge the logical reasoning capabilities of these
 models. Predicting sequences in mathematics requires recognizing patterns and trends in
 numerical data by looking for a logical structure or set of rules that the progression of terms
 follows. This requires the model to deduce the relationship between consecutive terms, and the

 logical reasoning is tested when looking for certain rules or patterns for a sequence. For testing
 and development, we use OpenAI’s GPT-4o, its most capable model, and we also evaluate our
 prompting techniques with other LLMs including Llama 3.1-8B, Google Gemma 2, and
 Mistral-7B. These are some of the latest and most capable transformer-based models available
 and therefore are used for our evaluation and discussion.

 The data that we used in this paper for testing and final evaluation is from specifically crafted
 sequences with challenging, unique, patterns, and from a large dataset: the Google DeepMind
 Math Dataset (15). This dataset was initially created for a DeepMind paper analyzing the
 mathematical reasoning capabilities of recurrent neural network models such as the relational
 memory core (RMC) model, Long Short-Term Memory (LSTM) recurrent neural network, and
 the unique Transformer model (16). In this paper, the transformer model has the best
 performance out of the three types of models, outperforming the LSTM and even Simple RMC
 with fewer parameters (30M). Many of the prominent LLMs in use today are also powered by
 transformer architecture, and this along with its superior performance is why we chose to focus
 on transformer models. The dataset itself is massive, consisting of modules including algebra,
 arithmetic, calculus, comparison, measurement, numbers, polynomials, and probability. A total
 of 2,010,000 examples were released per module (15). For this paper, we are focusing on and
 using the data from the “sequence_next_term” submodule from the algebra module. This
 consists of many next-term prediction questions that are in line with the aims of this paper.

 The data that we gathered from the dataset needed to be restructured in order for it to be
 effectively autonomously implemented. The preparation and testing framework that we used in
 this paper is as follows:

 Data Preparation
 1. The relevant data (sequence_next_term submodule) was gathered from the entire

 dataset files. The data classified in terms of difficulty was again labeled and fed into a
 new text file.

 2. This data was reformatted to adhere to the diagram below. Sets of sequences and
 answers were grouped together, each in its own line, with each sequence separated by
 a new blank line. This made it easier for future programs we wrote to parse through the
 data:

 What is next in 85, 84, 83, 82?
 81

 What is next in 15250, 15249, 15248, 15247, 15246?
 15245

 What comes next: 386, 384, 382?
 380
 ...

 3. Finally, the data was put through another program meant to restrict the sequences to
 single-digit, double-digit, 3-digit, and 5-digit sequences. We noticed during initial tests
 that many LLMs struggled with large arithmetic calculations. To reduce possible errors in
 sequence prediction due to arithmetic errors as opposed to incorrect logical reasoning,
 we restricted the sequences that we used to up to 5 digits. This limitation prevented the
 LLMs from making consistent calculation errors that were observed with larger numbers.
 Instead, the errors were in the reasoning process, i.e. incorrect steps or logic to solve
 the problem.

 Testing Framework
 We used a randomized testing framework to perform tests throughout the investigation process
 and to generate our final evaluation data. We created a program that randomly selects a specific
 number of sequence-answer pairs from the text files of easy, medium, and hard sequences to
 use for testing. These were then fed into GPT-4o the other models that we used for testing and
 the predicted answers were added to a list. This was finally evaluated against the expected
 answers and automatically scored.

 Baseline Testing - Zero-Shot Predictions
 For our baseline testing, we prompted the model to take the input sequence, process it, and
 output the number that it predicts to come next in the sequence. This is a type of zero-shot
 prompting technique as the model gets an unknown input without any previous examples or
 instructions on how it could be approached and has to simply output its prediction. The baseline
 behavior is outlined in Figure 1 below.

 Figure 1: Baseline Testing Behavior

 Methodology & Prompting Techniques
 We investigated the efficacy of various prompt engineering techniques and their combinations to
 improve the logical reasoning capabilities of Transformer LLMs with only input modifications. We
 researched and experimented with various prompting techniques for our use case. The
 prompting methods we worked with are the following:

 Chain-of-Thought Prompting
 LLMs sometimes fail to perform complex reasoning tasks effectively, which is where
 chain-of-thought prompting really helps. Chain-of-Thought (CoT) prompting was introduced in a
 paper (18) as a technique that makes LLMs use a step-by-step reasoning process. CoT
 prompting results in LLM outputs that show a much better understanding of the prompt (17).

 This prompting technique resulted in the highest performance in reasoning benchmarks with
 90.2% accuracy using PaLM 540B. Chain-of-Thought prompting is essentially applied as a
 few-shot technique. One or many samples are provided in the prompt along with a step-by-step
 explanation of their solution, with the LLM following this step-by-step reasoning process for the
 answer to the main question. In addition to Chain-of-Thought prompting, Zero-Shot
 Chain-of-Thought prompting exists as a zero-shot way to improve model performance, which is
 another technique we will evaluate.

 Figure 2: LLM behavior and output using Chain of Thought prompting

 Figure 2 illustrates the framework used with this type of prompting. The prompt was given to the
 LLM followed by the sequence and the output contained the reasoning of the LLM along with
 the predicted number.

 In-Context Retrieval with Few-Shot Prompting
 Few-shot prompting is a foundational prompting technique that enables LLMs to respond to
 inputs in a certain way without extensive instructions. It involves including several input-output
 pairs, leading to the name “few-shot”, with the expected output for each input in the prompt (20).
 CoT prompting, for example, is a few-shot technique, whereas Zero-Shot-CoT is a zero-shot
 technique. Providing a few examples of tasks improves the capabilities of LLMs to perform
 those tasks; however, this comes with the added token length in the input which may be
 restrictive (17). The exact composition of the examples may also affect few-shot prompting
 results. In-context retrieval relies on the model fetching certain data, like steps for solving the
 problem, from the few-shot samples and effectively applying that information to approach the
 question correctly.

 Figure 3: LLM behavior and output using Few-Shot prompting

 Figure 3 shows the framework for the few-shot prompting. It is similar to the process with Chain
 of Thought prompting: the instruction is given to the LLM followed by the sequence, and it
 outputs reasoning and the prediction. Since it is few-shot prompting, explanations of the solution
 are not given in the prompt.

 Zero-Shot Chain-of-Thought Prompting
 Zero-Shot Chain-of-Thought prompting aims to bring a very similar performance out of LLMas
 as traditional Chain-of-Thought works. It consists of a simple prompt to emulate the
 performance of few-shot CoT prompting. By simply adding the phrase “Let’s think step-by-step”
 to a prompt, this technique enables models to follow a step-by-step reasoning process (21).
 LLMs are observed to be able to create a chain of thought and execute with that using this
 prompt, allowing them to produce more accurate answers.

 Figure 4: LLM behavior and output using Zero-Shot Chain-of-Thought Prompting

 Figure 4 is a representation of the function using zero-shot CoT prompting. Unlike the
 frameworks for CoT and few-shot prompting, this one contains the sequence written before the
 prompt to use the correct language. The phrase “Let’s think step-by-step” logically follows a
 question, in this case, the sequence.

 Contrastive Chain-of-Thought Prompting
 This prompting method is also similar to chain of thought with a different implementation. It
 addresses a key issue that LLMs usually struggle with using CoT prompting, which is identifying
 their own mistakes and learning from them (17). Contrastive CoT involves providing the LLM
 with examples, like CoT, with correct and also invalid reasoning to guide the model toward
 figuring out the correct path of reasoning (22). The prompt contains samples for the correct
 process and samples for the incorrect process for multiple sample problems. This method
 outperforms traditional CoT by marginal percentages. Its applications in NLP beyond reasoning
 are still questioned, but its performance for reasoning tasks similar to our scenario is
 established (17).

 Figure 5: LLM behavior and output using Contrastive Chain-of-Thought Prompting

 Figure 5 shows the logical path followed for contrastive CoT prompting. This, again, is similar to
 the CoT and few-shot prompting framework. The instruction is given to the LLM along with the
 sequence, and the LLM outputs its reasoning along with the predicted number.

 Figure 6: All prompting technique logic paths

 Results
 To evaluate the performance of the models with the baseline prompting as well as the
 implementation of prompting techniques, a simple score was used. A set of samples were
 randomly generated and then fed through each of the models and tested. The score ranges
 from 0% - 100% with each correct answer adding to the score. For example, if the model
 predicted the next term for 60 sequences correctly out of 100 total, the score will be 60%. The
 models were tested autonomously by running the 100 sequences through the models one by

 one. Their results were saved, and the predicted numbers at the end of each output were
 extracted and added to a list. This was cross-referenced with the set of 100 input sequences’
 expected answers and the score was generated. This process was done for all the models,
 once for each difficulty with each prompting technique. For access to models, both the OpenAI
 API (23) and Together.ai (24) were used.

 Table 1: Transformer model scores on the difficulty-wise sequence prediction subsets for all prompting
 methods tested

 Model Prompting Technique Easy Medium Hard Average

 GPT-4o

 Baseline 77% 53% 48% 59%

 Few-shot 98% 85% 81% 88%

 Chain-of-Thought 96% 90% 91% 92%

 Zero-Shot
 Chain-of-Thought 95% 90% 84% 90%

 Contrastive
 Chain-of-Thought 95% 88% 80% 88%

 Meta Llama
 3.1-70B

 Baseline 58% 46% 27% 44%

 Few-shot 90% 88% 38% 72%

 Chain-of-Thought 93% 88% 73% 85%

 Zero-Shot
 Chain-of-Thought 86% 63% 48% 66%

 Contrastive
 Chain-of-Thought 93% 81% 63% 79%

 Mixtral-8x7B
 Instruct v0.1

 Baseline 63% 57% 47% 56%

 Few-shot 47% 25% 13% 28%

 Chain-of-Thought 35% 26% 14% 25%

 Zero-Shot
 Chain-of-Thought 46% 21% 11% 26%

 Contrastive
 Chain-of-Thought 41% 21% 12% 25%

 Google Gemma 2

 Baseline 68% 66% 46% 60%

 Few-shot 71% 62% 45% 59%

 Chain-of-Thought 81% 62% 26% 56%

 Zero-Shot
 Chain-of-Thought 72% 62% 43% 59%

 Contrastive
 Chain-of-Thought 75% 49% 36% 53%

 Analysis/Discussion
 Based on the results seen in Table 1 and the graph above, the various prompting techniques
 elicit different responses in the four models that were tested. Overall, the effectiveness of these
 prompting techniques to improve the performance of LLMs for logical reasoning through
 sequence prediction is apparent. GPT-4o was overall the most consistent and adaptable model,
 and based on benchmarks it is also the most capable model tested in this paper (24). GPT-4o
 achieved scores of 77%, 53%, and 48% on the baseline tests from easy, medium, and hard. It
 responded extremely well to all the prompting methods we tested. In the easy category, its
 highest increase was to 98% with few-shot prompting; for the medium category, both
 Chain-of-Thought and Zero-Shot CoT increased the score to 90%; and for hard, the highest
 score was to 91% with Chain-of-Thought prompting. Interestingly, the highest score achieved for
 the hard testing set was marginally (1 point) higher than the maximum score achieved for the
 medium testing set. This shows that the prompting techniques fundamentally enhance the
 reasoning capabilities of GPT-4o, allowing it to perform equally as well on the hardest testing set
 as the medium one.

 Meta’s Llama 3.1 70B also performed well. It achieved scores of 58%, 46%, and 27% for the
 easy, medium, and hard sets respectively. Although these scores are slightly lower compared to
 the other models, Llama 3.1 also performed very well with the prompting techniques. Using
 few-shot prompting, its score for the easy set increased to 90%, for the medium set increased to
 88%, and for the hard set increased to 38%. The slightly smaller improvement compared to
 GPT-4o could be because of the smaller size of the model at 70 billion parameters. Llama
 3.1-405B may show performance closer to that of GPT-4o. Especially for the easy and medium
 sets, the increase is quite significant, with the hard set score also increasing by a sizable
 amount. Few shot prompting does not contain any explanation, and this high increase in score
 can signify that models use the given examples as practice, and use that knowledge about how
 they solved the example question to solve the actual questions, indicating the rise in score. For

 CoT prompting, it achieved scores of 93%, 88%, and 73% for easy, medium, and hard
 respectively. These scores reflect the promising capabilities that Chain-of-Thought prompting
 displays. Zero-Shot CoT had scores that were also impressive considering the small size of the
 prompt, with almost no additional information or effort required to implement. Contrastive CoT
 also provided a satisfactory increase in performance. The contradictory explanations provided in
 the prompt help the LLM avoid hallucinations and incorrect logic while solving the sequences.

 Mixtral 8x7B, on the other hand, did not work well with the various prompting methods used at
 all. In fact, with all prompting methods, for the easy, medium, and hard sets, Mixtral’s scores
 dropped, with the lowest score being 11% using zero-shot CoT prompting on the hard set, but
 all other hard set scores were also comparable between 12% - 14%. This was quite an
 unexpected observation given the success of GPT-4o and Llama 3.1 using the same prompting
 methods. Mixtral even outperformed Llama in the baseline test without any prompting, but its
 performance was significantly reduced with the prompting methods.

 What is the next term in 36, -236, -1076, -2772, -5612, -9884, -15876,
 -23876?
 The sequence given seems to follow a pattern where the common difference
 between consecutive terms increases by a constant value each time.

 Starting from the first term, the common differences are:
 -200, -836, -1696, -2840, -3942, -4972

 If we look at the differences between these common differences, we can see
 that they increase by 636 each time:

 636, 636, 636, 636, 636

 So, if we continue this pattern, the next common difference should be:

 -4972 + 636 = -4336

 And the next term in the sequence would be:

 -23876 + (-4336) = -28212

 Predicted number: -28212

 Figure 7: Extract from a Mixtral 8x7B Instruct v0.1 Output

 Figure 6 shows a sample output of the Mixtral model on the hard testing set using
 Chain-of-Thought prompting. As seen in the figure, the logic used by the model is correct. It is
 relevant to the sequences in the dataset and matches the logic from the chain-of-thought
 prompt. It looks for patterns in the common difference and aims to extrapolate the next term
 based on that which is correct logic. The problem arises in the calculations. There are many
 arithmetic hallucinations in this solution, such as the difference between -236 and 36 being
 listed as -200, which should be -272. We observed several other examples where the model
 used the correct logic but got calculations in the middle wrong which led to an incorrect final
 answer. Given the strong baseline performance of the model, the prompting methods could be

 hindering the arithmetic capability of the model. In the prompts, example solutions are written
 out in a sentence-based logical form as opposed to a lengthy explanation of each step (the
 subtractions and each operation needed), which may benefit the logical reasoning but take
 away from the arithmetic calculations of the model in this scenario. Overall, despite the low
 score, We observed that the logic on a majority of the wrong questions was actually correct,
 indicating that the prompting techniques did at least work to increase the reasoning ability of the
 LLM.

 Google’s Gemma 2 also did not respond the best to the prompting methods. Its baseline scores
 were 68%, 66%, and 46% for easy, medium, and hard respectively. Its score in the easy testing
 set increased across the board. The highest increase on the easy set was to 81% using
 Chain-of-Thought prompting. On the medium testing set, the score dropped from 66% to 62%
 for CoT, few-shot, and zero-shot CoT. The score was lowest with contrastive CoT with 49%. Its
 hard set score of 46% stayed at around the same point with few-shot and zero-shot CoT
 prompting, with 45% and 43% respectively, The scores with CoT and contrastive CoT had a
 more significant drop. This trend seems to indicate that, at least for harder functions, the
 reasoning provided in the Chain-of-Thought prompts that proves effective for other models
 hindered Gemma 2’s reasoning process. Figure 7 below depicts how the model can have
 incorrect reasoning: it correctly calculated the differences and identified the constant difference,
 but made a mistake when adding to the previous term to find the next term. Instead of adding
 -148, it adds -156, which is wrong.

 What is next in -22471, -22721, -22969, -23209, -23435, -23641, -23821?
 The common difference between the terms is -250, -248, -240, -226, -206,
 -180. The common difference between these terms is 2, 8, 14, 20, 26. The
 common difference between these terms is 6, 6, 6, 6. Since the common
 difference is constant, the next common difference will be 6. Hence, the
 next term will be -23821 + (-154) = -24075.

 Figure 8: Extract from a Google Gemma 2 Output

 Overall, the results for the prompting methods were promising. For Google Gemma 2 and
 Mixtral 8x7B, the prompting methods did not turn out very effective, however, Google Gemma 2
 did not suffer a very big performance downgrade across the board as was observed with Mixtral.
 On the other hand with Meta Llama 3.1-70B and OpenAI GPT-4o, the prompting methods were
 extremely effective in increasing the performance of the models. Overall, Chain-of-Thought
 prompting was the most effective for all models. Few-shot prompting did work well to increase
 the performance for both GPT-4o and Llama 3.1-70B, but wasn’t as effective as CoT, and
 provided a bigger increase in the easy testing set over the medium or hard. Contrastive CoT did
 work to remove some hallucinations in the models based on qualitative observations but was
 not as effective as CoT. Zero-shot CoT served as a great way to increase model performance
 without a heavy application. Compared to the other three prompting techniques which are all
 few-shot, zero-shot CoT performed extremely well as a zero-shot alternative with a simple
 implementation. It also outperformed contrastive CoT and few-shot prompting in certain areas.

 Limitations & Discussion
 As discussed in the analysis, some prompts that followed the shorter prompting style framework
 seemed to be affecting the model’s arithmetic capabilities. Some models like Mixtral 8x7B
 struggled with these prompts, as they were trying to emulate the solution given in the prompt,
 which was written in sentences containing overarching steps, not containing every single step
 and operation. This could be limiting the capabilities of those models, but it is generally how
 prompting is carried out. Complete, extremely detailed, operation-by-operation prompting is not
 usually carried out (17) and this would be very tedious for prompt generation. Additionally, we
 were not able to use some of the larger open-source and closed-source models due to
 computing and cost limitations. Some much larger open-source models that could have shown
 enhanced results in both the baseline and their scores with the prompting techniques include
 Meta Llama 3.1-405B and Mixtral 8x22B. Anthropic’s Claude 3.5 Sonnet is also a closed-source
 model viable for testing that has similar performance as GPT-4o in logical reasoning.

 This work helps to present prompting methods as crucial elements in improving the reasoning of
 large language models. However, future work should also consider how well these methods
 generalize to a much wider array of tasks and models. Another potential viable direction could
 be in hybrid methods that combine CoT with other approaches, for example, program-based
 prompting. In addition, as LLMs continue to be more and more applied to complex reasoning
 tasks such as mathematics (10), science (25), and legal analysis (26), these prompting
 strategies will be important for extending their capabilities.

 Conclusion
 In this paper, we have worked towards evaluating the effectiveness of various prominent
 prompting techniques on multiple large language models, namely GPT-4o, Meta Llama 3.1-70B,
 Mixtral 8x7B v0.1, and Google Gemma 2. We have also presented a brief on each of the
 prompting methods used and their functionality. The models were evaluated based on a random
 set of 100 samples from the easy, medium, and hard subsets of the Mathematics Dataset
 originally released by Google DeepMind (15). These samples were fed one-by-one to the
 models and a score was calculated based on model output for the predicted number. GPT-4o
 performed the best overall, with good baseline scores and an excellent improvement in score
 with the implementation of all of the prompting techniques. Meta Llama 3.1-70B also performed
 well. It did not do very well in the baseline testing but had many score improvements with the
 prompting techniques.

 Based on our data we have seen that Chain-of-Thought prompting serves as the best overall
 prompting technique to improve the logical reasoning capabilities of the transformer models we
 tested. The other prompting methods also worked quite well for most cases, with zero-shot CoT
 providing promising performance increases with very little prompt engineering required. Future
 work can focus on further evaluation of these techniques and others along with a more diverse
 set of models to further comment on the efficacy of these prompting models and their relevance
 in improving LLM performance. Investigating how LLM reasoning capabilities can be enhanced
 is crucial for their increased use of mathematics and other subject areas that may require

 excellent logical reasoning. This paper has evaluated four prompting methods with four models
 and presented Chain-of-Thought prompting as the most effective overall.

 References
 1. A. Ltd, “What is pattern recognition,” Arm | The Architecture for the Digital World.

 Accessed: Sep. 07, 2024. [Online]. Available:
 https://www.arm.com/glossary/pattern-recognition

 2. A. Ali et al., “Financial Fraud Detection Based on Machine Learning: A Systematic
 Literature Review,” Applied Sciences, vol. 12, no. 19, Art. no. 19, Jan. 2022, doi:
 10.3390/app12199637.

 3. W. Zheng, H. Xie, Y. Chen, J. Roh, and H. Shin, “PIFNet: 3D Object Detection Using
 Joint Image and Point Cloud Features for Autonomous Driving,” Applied Sciences, vol.
 12, no. 7, Art. no. 7, Jan. 2022, doi: 10.3390/app12073686.

 4. X. Ren, W. Zhang, M. Wu, C. Li, and X. Wang, “Meta-YOLO: Meta-Learning for
 Few-Shot Traffic Sign Detection via Decoupling Dependencies,” Applied Sciences, vol.
 12, no. 11, Art. no. 11, Jan. 2022, doi: 10.3390/app12115543.

 5. S. Barra, S. M. Carta, A. Corriga, A. S. Podda, and D. R. Recupero, “Deep Learning and
 Time Series-to-Image Encoding for Financial Forecasting,” IEEE/CAA JAS, vol. 7, no. 3,
 pp. 683–693, 2020, doi: 10.1109/JAS.2020.1003132.

 6. M. Yasin and T. Nusantara, “Characteristics of pattern recognition to solve mathematics
 problems in computational thinking,” AIP Conference Proceedings, vol. 2569, no. 1, p.
 040009, Jan. 2023, doi: 10.1063/5.0112171.

 7. M. Bower et al., “Improving the Computational Thinking Pedagogical Capabilities of
 School Teachers,” Australian Journal of Teacher Education, vol. 42, no. 3, Jan. 2017,
 doi: 10.14221/ajte.2017v42n3.4.

 8. K. Burgoyne, K. Witteveen, A. Tolan, S. Malone, and C. Hulme, “Pattern Understanding:
 Relationships With Arithmetic and Reading Development,” Child Development
 Perspectives, vol. 11, no. 4, pp. 239–244, 2017, doi: 10.1111/cdep.12240.

 9. J. Banda, “Benefits of LLMs in Education – Jen’s Teaching and Learning Hub.”
 Accessed: Sep. 07, 2024. [Online]. Available:
 https://publish.illinois.edu/teaching-learninghub-byjen/benefits-of-llms-in-education/

 10. S. Imani, L. Du, and H. Shrivastava, “MathPrompter: Mathematical Reasoning using
 Large Language Models,” Mar. 03, 2023, arXiv: arXiv:2303.05398. doi:
 10.48550/arXiv.2303.05398.

 11. Y. Zhuang et al., “From Static Benchmarks to Adaptive Testing: Psychometrics in AI
 Evaluation,” Aug. 06, 2024, arXiv: arXiv:2306.10512. doi: 10.48550/arXiv.2306.10512.

 12. H. Melissa, “Why does AI being good at math matter?,” MIT Technology Review.
 Accessed: Sep. 07, 2024. [Online]. Available:
 https://www.technologyreview.com/2024/01/23/1086944/why-does-ai-being-good-at-mat
 h-matter/

 13. T. Trinh and T. Luong, “AlphaGeometry: An Olympiad-level AI system for geometry,”
 Google DeepMind. Accessed: Sep. 07, 2024. [Online]. Available:
 https://deepmind.google/discover/blog/alphageometry-an-olympiad-level-ai-system-for-g
 eometry/

 14. S. Sinha, A. Prabhu, P. Kumaraguru, S. Bhat, and M. Bethge, “Wu’s Method can Boost
 Symbolic AI to Rival Silver Medalists and AlphaGeometry to Outperform Gold Medalists

 at IMO Geometry,” Apr. 11, 2024, arXiv: arXiv:2404.06405. doi:
 10.48550/arXiv.2404.06405.

 15. D. Saxton, E. Grefenstette, F. Hill, and P. Kohli, “Analysing Mathematical Reasoning
 Abilities of Neural Models,” presented at the International Conference on Learning
 Representations, Sep. 2018. Accessed: Sep. 07, 2024. [Online]. Available:
 https://openreview.net/forum?id=H1gR5iR5FX

 16. A. Vaswani et al., “Attention is all you need,” in Proceedings of the 31st International
 Conference on Neural Information Processing Systems, in NIPS’17. Red Hook, NY,
 USA: Curran Associates Inc., Dec. 2017, pp. 6000–6010.

 17. P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, and A. Chadha, “A Systematic
 Survey of Prompt Engineering in Large Language Models: Techniques and
 Applications,” Feb. 05, 2024, arXiv: arXiv:2402.07927. doi: 10.48550/arXiv.2402.07927.

 18. J. Wei et al., “Chain-of-thought prompting elicits reasoning in large language models,” in
 Proceedings of the 36th International Conference on Neural Information Processing
 Systems, in NIPS ’22. Red Hook, NY, USA: Curran Associates Inc., Apr. 2024, pp.
 24824–24837.

 19. W. Chen, X. Ma, X. Wang, and W. W. Cohen, “Program of Thoughts Prompting:
 Disentangling Computation from Reasoning for Numerical Reasoning Tasks,”
 Transactions on Machine Learning Research, Jun. 2023, Accessed: Sep. 07, 2024.
 [Online]. Available: https://openreview.net/forum?id=YfZ4ZPt8zd

 20. T. Brown et al., “Language Models are Few-Shot Learners,” in Advances in Neural
 Information Processing Systems, Curran Associates, Inc., 2020, pp. 1877–1901.
 Accessed: Sep. 07, 2024. [Online]. Available:
 https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.h
 tml

 21. T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large Language Models are
 Zero-Shot Reasoners,” presented at the ICML 2022 Workshop on Knowledge Retrieval
 and Language Models, Jul. 2022. Accessed: Sep. 07, 2024. [Online]. Available:
 https://openreview.net/forum?id=6p3AuaHAFiN

 22. Y. K. Chia, G. Chen, L. A. Tuan, S. Poria, and L. Bing, “Contrastive Chain-of-Thought
 Prompting,” Nov. 15, 2023, arXiv: arXiv:2311.09277. doi: 10.48550/arXiv.2311.09277.

 23. “Together AI.” Accessed: Sep. 07, 2024. [Online]. Available: https://www.together.ai/
 24. “LLM Leaderboard 2024.” Accessed: Sep. 07, 2024. [Online]. Available:

 https://www.vellum.ai/llm-leaderboard
 25. A. Birhane, A. Kasirzadeh, D. Leslie, and S. Wachter, “Science in the age of large

 language models,” Nat Rev Phys, vol. 5, no. 5, pp. 277–280, May 2023, doi:
 10.1038/s42254-023-00581-4.

 26. J. Lai, W. Gan, J. Wu, Z. Qi, and P. S. Yu, “Large Language Models in Law: A Survey,”
 Nov. 26, 2023, arXiv: arXiv:2312.03718. doi: 10.48550/arXiv.2312.03718.

 27. H. Zhen, Y. Shi, Y. Huang, J. J. Yang, and N. Liu, “Leveraging Large Language Models
 with Chain-of-Thought and Prompt Engineering for Traffic Crash Severity Analysis and
 Inference,” Aug. 04, 2024, arXiv: arXiv:2408.04652. doi: 10.48550/arXiv.2408.04652.

 28. X. Shi et al., “Language Models Can Improve Event Prediction by Few-Shot Abductive
 Reasoning,” presented at the Thirty-seventh Conference on Neural Information

 Processing Systems, Nov. 2023. Accessed: Sep. 07, 2024. [Online]. Available:
 https://openreview.net/forum?id=aW9BqtRQkh

 29. M. T. R. Laskar, M. S. Bari, M. Rahman, M. A. H. Bhuiyan, S. Joty, and J. X. Huang, “A
 Systematic Study and Comprehensive Evaluation of ChatGPT on Benchmark Datasets,” Jul.
 05, 2023, arXiv: arXiv:2305.18486. Accessed: Sep. 07, 2024. [Online]. Available:
 http://arxiv.org/abs/2305.18486

 30. H. Liu, R. Ning, Z. Teng, J. Liu, Q. Zhou, and Y. Zhang, “Evaluating the Logical
 Reasoning Ability of ChatGPT and GPT-4,” May 05, 2023, arXiv: arXiv:2304.03439. doi:
 10.48550/arXiv.2304.03439.

 31. A. Gu et al., “The Counterfeit Conundrum: Can Code Language Models Grasp the
 Nuances of Their Incorrect Generations?,” CoRR, Jan. 2024, Accessed: Sep. 07, 2024.
 [Online]. Available: https://openreview.net/forum?id=9HWiohnxoM

 32. J. Huang et al., “Large Language Models Cannot Self-Correct Reasoning Yet,”
 presented at the The Twelfth International Conference on Learning Representations,
 Oct. 2023. Accessed: Sep. 07, 2024. [Online]. Available:
 https://openreview.net/forum?id=IkmD3fKBPQ

 33. “ChatGPT.” Accessed: Sep. 28, 2024. [Online]. Available: https://chatgpt.com
 34. “Introducing Claude 3.5 Sonnet.” Accessed: Sep. 28, 2024. [Online]. Available:

 https://www.anthropic.com/news/claude-3-5-sonnet
 35. “ Gemini - chat to supercharge your ideas,” Gemini. Accessed: Sep. 28, 2024. [Online].

 Available: https://gemini.google.com

 Appendix
 A. Prompts used for each technique
 Baseline:

 You will be given a sequence of numbers. You need to predict the next
 number, with your output containing only this predicted number.
 <SEQUENCE/>

 Few-Shot Prompting:

 “Example 1: What comes next: 13, 14, 11, 4, -7?. Solution: -22;
 Example 2: What comes next: 386, 384, 382? Solution: 380; Example 3:
 What comes next: -2737, -2134, -1531? Solution: -928; Make sure the
 predicted number is clearly visible at the end of your answer in the
 form: 'Predicted number: <NUM>'. Question: <SEQUENCE/>”

 Chain-of-Thought Prompting:

 “Example 1: What comes next: 13, 14, 11, 4, -7?. Solution: The common
 difference between the terms is 1, -3, -7, -11. The common difference
 between these terms is -4, -4, -4. Since the common difference is
 changing by -4 every time, the next common difference will be -11 +

 -4 = -15. Hence, the next term will be -7 + (-15) = -22; Example 2:
 What comes next: 386, 384, 382? Solution: The common difference
 between the terms is -2, -2. This common difference does not seem to
 be changing. Hence, the next term will be 382 + -2 = 380; Example 3:
 What comes next: -2737, -2134, -1531? Solution: The common difference
 between the terms is 603, 603. It stays the same. Hence, the next
 term is -1531 + 603 = -928. Make sure the predicted number is clearly
 visible at the end of your answer in the form: 'Predicted number:
 <NUM>'. Question: <SEQUENCE/>”

 Zero-Shot Chain-of-Thought:

 “<SEQUENCE/>. Make sure the predicted number is clearly visible at
 the end of your answer in the form: 'Predicted number: <NUM>'. Let’s
 think step-by-step. ”

 Contrastive Chain-of-Thought:

 “Example 1 (wrong): What comes next: 13, 14, 11, 4, -7?. Solution
 (wrong): the common difference is 1, -3, -7, and -11. The difference
 between these common differences is -4. Hence, the next term is -7 +
 (-4) = -11; Example 2 (wrong): What comes next: 386, 384, 382?
 Solution (wrong): The common difference between the terms is -2, -2.
 The difference between these differences is 0. Hence, the next term
 is 382 + 0 = 382; Example 3 (correct): What comes next: -2737, -2134,
 -1531? Solution (correct): The common difference between the terms is
 603, 603. It stays the same. Hence, the next term is -1531 + 603 =
 -928; Make sure the predicted number is clearly visible at the end of
 your answer in the form: 'Predicted number: <NUM>'. Question:
 <SEQUENCE/>”

 B. Incorrect Output Extracts
 Mixtral 8x7B Instruct v0.1 Output

 What comes next: -1661, -2064, -2477, -2900, -3333?
 The common difference between the terms is 403, 413, 423, 433. It is
 increasing by 10 each time. So, the next common difference will be
 433 + 10 = 443. Hence, the next term will be -3333 + 443 = -2890.

 Predicted number: -2890

 What comes next: 1719, 1928, 2551, 3798, 5879, 9004, 13383, 19226?
 The sequence appears to be increasing by a factor each time. The
 common ratio between the terms is 1.133 (approximately), and it seems
 to be staying the same. Hence, the next term will be 19226 * 1.133 =
 21799.68 or approximately 21799 (when rounded to the nearest whole
 number).

 Predicted number: 21799

 What is next in -37, -961, -3615, -8863, -17569, -30597?
 The sequence appears to be formed by multiplying the previous term by
 -25 and then adding a constant. We can find the constant by solving
 for it in the first two terms: -961 = (-25 * -37) + c, so c = -961 +
 (25 * 37) = 2469.

 Now we can find the next term by multiplying the last term by -25 and
 adding the constant: -30597 * -25 + 2469 = 764925 + 2469 = 767394.

 Predicted number: 767394

 Google Gemma 2

 What comes next: 682, 1309, 1960, 2635, 3334, 4057, 4804?
 The common difference between the terms is 627, 651, 675, 699, 723,
 723. The common difference between these terms is 24, 24, 24, 24, 0.
 Since the common difference is changing by 0 every time, the next
 common difference will be 723 + 0 = 723. Hence, the next term will be
 4804 + 723 = 5527.

 Predicted number: 5527

 What is the next term in -3043, -3154, -3321, -3544, -3823, -4158?
 The common difference between the terms is -111, -167, -223, -279,
 -335. The common difference between these terms is -56, -56, -56,
 -56. Since the common difference is constant, the next common
 difference will be -56. Hence, the next term will be -4158 + (-56) =
 -4214.

 Predicted number: -4214

